Ejemplo n.º 1
0
def LDL(param, X, pm, Nstep, baryon=True):

    fac = 1.0 * pm.Nmesh.prod() / pm.comm.allreduce(len(X), op=MPI.SUM)

    X = Displacement(param, X, pm, Nstep)

    #paint particle overdensity field
    layout = fastpm.decompose(X, pm)
    Xl = fastpm.exchange(X, layout)
    delta = fac * fastpm.paint(Xl, 1., None, pm)

    if baryon:
        #take parameters
        mu = linalg.take(param, 5*Nstep, axis=0)
        b1 = linalg.take(param, 5*Nstep+1, axis=0)
        b0 = linalg.take(param, 5*Nstep+2, axis=0)
    
        mu = mpi.allbcast(mu, comm=pm.comm)
        mu = linalg.broadcast_to(mu, eval(delta, lambda x : x.shape))
        b1 = mpi.allbcast(b1, comm=pm.comm)
        b1 = linalg.broadcast_to(b1, eval(delta, lambda x : x.shape))
        b0 = mpi.allbcast(b0, comm=pm.comm)
        b0 = linalg.broadcast_to(b0, eval(delta, lambda x : x.shape))
    
        #Field transformation
        F = ReLU(b1 * (delta+1e-8) ** mu + b0) #definition of b0 is different from the paper
    else:
        F = delta
    
    return F
Ejemplo n.º 2
0
def LDL(param, X, pm, Nstep, baryon=True):

    fac = 1.0 * pm.Nmesh.prod() / pm.comm.allreduce(len(X), op=MPI.SUM)

    X = Displacement(param, X, pm, Nstep)

    #paint particle overdensity field
    layout = fastpm.decompose(X, pm)
    Xl = fastpm.exchange(X, layout)
    delta = fac * fastpm.paint(Xl, 1., None, pm)

    if baryon:
        #take parameters
        gamma = linalg.take(param, 5*Nstep, axis=0)
        bias0 = linalg.take(param, 5*Nstep+1, axis=0)
        bias1 = linalg.take(param, 5*Nstep+2, axis=0)
    
        gamma = mpi.allbcast(gamma, comm=pm.comm)
        gamma = linalg.broadcast_to(gamma, eval(delta, lambda x : x.shape))
        bias0 = mpi.allbcast(bias0, comm=pm.comm)
        bias0 = linalg.broadcast_to(bias0, eval(delta, lambda x : x.shape))
        bias1 = mpi.allbcast(bias1, comm=pm.comm)
        bias1 = linalg.broadcast_to(bias1, eval(delta, lambda x : x.shape))
    
        #Field transformation
        F = ReLU(bias0 * (delta+1e-8) ** gamma + bias1)
    else:
        F = delta
    
    return F
Ejemplo n.º 3
0
 def model(self, x):
     a = linalg.take(x, [[2, 2], [2, 2]], axis=0)
     b = linalg.take(a, 0, axis=0)
     c = linalg.take(b, 0, axis=0)
     #d = linalg.take(b, 0, axis=0)
     #watchpoint(b, lambda b:print('b=', b))
     #watchpoint(c, lambda c:print('c=', c))
     #    watchpoint(d, lambda d:print('d=', d))
     return c + c
Ejemplo n.º 4
0
 def rotate(self, x, M, boxshift):
     """
     rotates, shift, and separates particle coordinates into distance and xy position
     x:        particle positions
     M:        rotation matrix
     boxshift: shift vector
     """
     y = linalg.einsum('ij,kj->ki', (M, x))
     y = y + self.pm.BoxSize * boxshift
     d = linalg.take(y, 2, axis=1)
     xy = linalg.take(y, (0, 1), axis=1)
     return dict(xy=xy, d=d)
Ejemplo n.º 5
0
def Displacement(param, X, pm, Nstep):

    #Lagrangian displacement

    #normalization constant for overdensity 
    fac = 1.0 * pm.Nmesh.prod() / pm.comm.allreduce(len(X), op=MPI.SUM)

    for i in range(Nstep):

        #move the particles across different MPI ranks
        layout = fastpm.decompose(X, pm)
        xl = fastpm.exchange(X, layout)
        delta = fac * fastpm.paint(xl, 1.0, None, pm)

        #take parameters
        alpha = linalg.take(param, 5*i, axis=0)
        gamma = linalg.take(param, 5*i+1, axis=0)
        kh = linalg.take(param, 5*i+2, axis=0)
        kl = linalg.take(param, 5*i+3, axis=0)
        n = linalg.take(param, 5*i+4, axis=0)
        
        #delta**gamma
        gamma = mpi.allbcast(gamma, comm=pm.comm)
        gamma = linalg.broadcast_to(gamma, eval(delta, lambda x : x.shape)) 
        delta = (delta+1e-8) ** gamma

        #Fourier transform
        deltak = fastpm.r2c(delta)

        #Green's operator in Fourier space
        Filter = Literal(pm.create(type='complex', value=1).apply(lambda k, v: k.normp(2, zeromode=1e-8) ** 0.5))
        kh = mpi.allbcast(kh, comm=pm.comm)
        kh = linalg.broadcast_to(kh, eval(Filter, lambda x : x.shape)) 
        kl = mpi.allbcast(kl, comm=pm.comm)
        kl = linalg.broadcast_to(kl, eval(Filter, lambda x : x.shape)) 
        n = mpi.allbcast(n, comm=pm.comm)
        n = linalg.broadcast_to(n, eval(Filter, lambda x : x.shape)) 
        
        Filter = - unary.exp(-Filter**2/kl**2) * unary.exp(-kh**2/Filter**2) * Filter**n
        Filter = compensate2factor(Filter) 

        p = complex_mul(deltak, Filter)

        #gradient of potential
        r1 = []
        for d in range(pm.ndim):
            dx1_c = fastpm.apply_transfer(p, fastpm.fourier_space_neg_gradient(d, pm, order=1))
            dx1_r = fastpm.c2r(dx1_c)
            dx1l = fastpm.readout(dx1_r, xl, None)
            dx1 = fastpm.gather(dx1l, layout)
            r1.append(dx1)

        #displacement
        S = linalg.stack(r1, axis=-1)
        alpha = mpi.allbcast(alpha, comm=pm.comm)
        alpha = linalg.broadcast_to(alpha, eval(S, lambda x : x.shape)) 
        S = S * alpha

        X = X+S
        
    return X
Ejemplo n.º 6
0
 def func(x):
     b = 0
     for i in range(3):
         b = b + linalg.take(x, i, axis=0)
     return b
Ejemplo n.º 7
0
 def model(self, x):
     return linalg.sum(linalg.take(x, [2, 2], axis=0), axis=0)
Ejemplo n.º 8
0
 def model(self, x):
     x_ = linalg.take(x, 0, axis=0)
     elems = linalg.take(x, 1, axis=0)
     elem = linalg.take(elems, 0, axis=0)
     res = lightcone.list_put(x_, elem, self.i)
     return res
Ejemplo n.º 9
0
 def model(self, x):
     y = linalg.einsum('ij,kj->ki', (self.M, x))
     y = y + self.pm.BoxSize * self.boxshift
     d = linalg.take(y, 2, axis=1)
     xy = linalg.take(y, (0, 1), axis=1)
     return xy  #d
Ejemplo n.º 10
0
 def func(x, n):
     a = linalg.take(n, 0, axis=0)
     a = linalg.broadcast_to(a, eval(x, lambda x: x.shape))
     return x + a
Ejemplo n.º 11
0
 def model(self, x):
     x1 = linalg.take(x, 0, axis=0)
     x2 = linalg.take(x, 1, axis=0)
     return type(self).ufunc(x1, x2)