Ejemplo n.º 1
0
def train_mlprnn(weight_path=sys.argv[1],
                 file_name1=sys.argv[2],
                 L1_reg=0.0,
                 L2_reg=0.0000,
                 path_name='/exports/work/inf_hcrc_cstr_udialogue/siva/data/'):

    voc_list = Vocabulary(path_name + 'train')
    voc_list.vocab_create()
    vocab = voc_list.vocab
    vocab_size = voc_list.vocab_size

    dataprovider_train = DataProvider(path_name + 'train', vocab, vocab_size)
    dataprovider_valid = DataProvider(path_name + 'valid', vocab, vocab_size)
    dataprovider_test = DataProvider(path_name + 'test', vocab, vocab_size)

    print '..building the model'

    #symbolic variables for input, target vector and batch index
    index = T.lscalar('index')
    x1 = T.fvector('x1')
    x2 = T.fvector('x2')
    x3 = T.fvector('x3')
    ht1 = T.fvector('ht1')
    y = T.ivector('y')
    learning_rate = T.fscalar('learning_rate')

    #theano shared variables for train, valid and test
    train_set_x1 = theano.shared(numpy.empty((1), dtype='float32'),
                                 allow_downcast=True)
    train_set_x2 = theano.shared(numpy.empty((1), dtype='float32'),
                                 allow_downcast=True)
    train_set_x3 = theano.shared(numpy.empty((1), dtype='float32'),
                                 allow_downcast=True)
    train_set_y = theano.shared(numpy.empty((1), dtype='int32'),
                                allow_downcast=True)

    valid_set_x1 = theano.shared(numpy.empty((1), dtype='float32'),
                                 allow_downcast=True)
    valid_set_x2 = theano.shared(numpy.empty((1), dtype='float32'),
                                 allow_downcast=True)
    valid_set_x3 = theano.shared(numpy.empty((1), dtype='float32'),
                                 allow_downcast=True)
    valid_set_y = theano.shared(numpy.empty((1), dtype='int32'),
                                allow_downcast=True)

    test_set_x1 = theano.shared(numpy.empty((1), dtype='float32'),
                                allow_downcast=True)
    test_set_x2 = theano.shared(numpy.empty((1), dtype='float32'),
                                allow_downcast=True)
    test_set_x3 = theano.shared(numpy.empty((1), dtype='float32'),
                                allow_downcast=True)
    test_set_y = theano.shared(numpy.empty((1), dtype='int32'),
                               allow_downcast=True)

    rng = numpy.random.RandomState()

    classifier = MLP_RNN(rng=rng,
                         input1=x1,
                         input2=x2,
                         input3=x3,
                         initial_hidden=ht1,
                         n_in=vocab_size,
                         fea_dim=int(sys.argv[3]),
                         context_size=2,
                         n_hidden=int(sys.argv[4]),
                         n_out=vocab_size)

    hidden_state = theano.shared(
        numpy.empty((int(sys.argv[4]), ), dtype='float32'))

    cost = classifier.cost(y)

    #constructor for learning rate class
    learnrate_schedular = LearningRateNewBob(start_rate = 0.05, scale_by=.5, max_epochs=9999,\
                                    min_derror_ramp_start=.01, min_derror_stop=.01, init_error=100.)

    log_likelihood = classifier.sum(y)
    likelihood = classifier.likelihood(y)

    #test_model
    test_model = theano.function(inputs = [], outputs = [log_likelihood, likelihood],  \
                                 givens = {x1: test_set_x1,
                                           x2: test_set_x2,
                                           x3: test_set_x3,
                                           ht1: hidden_state,
                                           y: test_set_y})
    #validation_model
    validate_model = theano.function(inputs = [], outputs = [log_likelihood], \
                                     givens = {x1: valid_set_x1,
                                               x2: valid_set_x2,
                                               x3: valid_set_x3,
                                               ht1: hidden_state,
                                               y: valid_set_y})

    gradient_param = []
    #calculates the gradient of cost with respect to parameters
    for param in classifier.params:
        gradient_param.append(T.cast(T.grad(cost, param), 'float32'))

    updates = []
    #updates the parameters
    for param, gradient in zip(classifier.params, gradient_param):
        updates.append((param, param - learning_rate * gradient))

    #training_model
    train_model = theano.function(inputs = [learning_rate], outputs = [cost, classifier.RNNhiddenlayer.output], updates = updates, \
                                 givens = {x1: train_set_x1,
                                           x2: train_set_x2,
                                           x3: train_set_x3,
                                           ht1: hidden_state,
                                           y: train_set_y})
    f = h5py.File(weight_path + file_name1, "r")
    for i in xrange(0, classifier.no_of_layers, 2):
        path_modified = '/' + 'MLP' + str(2) + '/layer' + str(i / 2)
        if i == 4:
            classifier.MLPparams[i].set_value(numpy.asarray(f[path_modified +
                                                              "/W"].value,
                                                            dtype='float32'),
                                              borrow=True)
        else:
            classifier.MLPparams[i].set_value(numpy.asarray(f[path_modified +
                                                              "/W"].value,
                                                            dtype='float32'),
                                              borrow=True)
            classifier.MLPparams[i + 1].set_value(numpy.asarray(
                f[path_modified + "/b"].value, dtype='float32'),
                                                  borrow=True)
    f.close()

    print '.....training'
    best_valid_loss = numpy.inf
    start_time = time.time()
    while (learnrate_schedular.get_rate() != 0):

        print 'learning_rate:', learnrate_schedular.get_rate()
        print 'epoch_number:', learnrate_schedular.epoch
        frames_showed, progress = 0, 0
        start_epoch_time = time.time()
        dataprovider_train.reset()

        for feats_lab_tuple in dataprovider_train:

            features, labels = feats_lab_tuple

            if labels is None or features is None:
                continue
            frames_showed += features.shape[0]
            for temp, i in zip(features, xrange(len(labels))):
                temp_features1 = numpy.zeros(vocab_size, dtype='float32')
                temp_features2 = numpy.zeros(vocab_size, dtype='float32')
                temp_features3 = numpy.zeros(vocab_size, dtype='float32')
                temp_features1[temp[0]] = 1
                temp_features2[temp[1]] = 1
                temp_features3[temp[1]] = 1
                train_set_x1.set_value(numpy.asarray(temp_features1,
                                                     dtype='float32'),
                                       borrow=True)
                train_set_x2.set_value(numpy.asarray(temp_features2,
                                                     dtype='float32'),
                                       borrow=True)
                train_set_x3.set_value(numpy.asarray(temp_features2,
                                                     dtype='float32'),
                                       borrow=True)
                train_set_y.set_value(numpy.asarray([labels[i]],
                                                    dtype='int32'),
                                      borrow=True)
                out = train_model(
                    numpy.array(learnrate_schedular.get_rate(),
                                dtype='float32'))
                hidden_state.set_value(numpy.asarray(out[1], dtype='float32'),
                                       borrow=True)

            progress += 1
            if progress % 10000 == 0:
                end_time_progress = time.time()
                print 'PROGRESS: Processed %i bunches (%i frames), TIME: %f in seconds'\
                          %(progress, frames_showed,(end_time_progress-start_epoch_time))
            train_set_x1.set_value(numpy.empty((1), dtype='float32'))
            train_set_x2.set_value(numpy.empty((1), dtype='float32'))
            train_set_x3.set_value(numpy.empty((1), dtype='float32'))
            train_set_y.set_value(numpy.empty((1), dtype='int32'))

        end_time_progress = time.time()
        print 'PROGRESS: Processed %i bunches (%i frames), TIME: %f in seconds'\
                          %(progress, frames_showed,(end_time_progress-start_epoch_time))

        print 'Validating...'
        valid_losses = []
        log_likelihood = []
        valid_frames_showed, progress = 0, 0
        start_valid_time = time.time()  # it is also stop of training time
        dataprovider_valid.reset()

        for feats_lab_tuple in dataprovider_valid:
            features, labels = feats_lab_tuple
            if labels is None or features is None:
                continue
            valid_frames_showed += features.shape[0]
            for temp, i in zip(features, xrange(len(labels))):
                temp_features1 = numpy.zeros(vocab_size, dtype='float32')
                temp_features2 = numpy.zeros(vocab_size, dtype='float32')
                temp_features3 = numpy.zeros(vocab_size, dtype='float32')
                temp_features1[temp[0]] = 1
                temp_features2[temp[1]] = 1
                temp_features3[temp[1]] = 1
                valid_set_x1.set_value(numpy.asarray(temp_features1,
                                                     dtype='float32'),
                                       borrow=True)
                valid_set_x2.set_value(numpy.asarray(temp_features2,
                                                     dtype='float32'),
                                       borrow=True)
                valid_set_x3.set_value(numpy.asarray(temp_features3,
                                                     dtype='float32'),
                                       borrow=True)
                valid_set_y.set_value(numpy.asarray([labels[i]],
                                                    dtype='int32'),
                                      borrow=True)
                out = validate_model()
                #error_rate = out[0]
                likelihoods = out[0]
                #valid_losses.append(error_rate)
                log_likelihood.append(likelihoods)
            valid_set_x1.set_value(numpy.empty((1), 'float32'))
            valid_set_y.set_value(numpy.empty((1), 'int32'))

            progress += 1
            if progress % 1000 == 0:
                end_time_valid_progress = time.time()
                print 'PROGRESS: Processed %i bunches (%i frames),  TIME: %f in seconds'\
                          %(progress, valid_frames_showed, end_time_valid_progress - start_valid_time)

        end_time_valid_progress = time.time()
        print 'PROGRESS: Processed %i bunches (%i frames),  TIME: %f in seconds'\
                          %(progress, valid_frames_showed, end_time_valid_progress - start_valid_time)
        #this_validation_loss = numpy.mean(valid_losses)
        entropy = (-numpy.sum(log_likelihood) / valid_frames_showed)
        print entropy, numpy.sum(log_likelihood)

        if entropy < best_valid_loss:
            learning_rate = learnrate_schedular.get_next_rate(entropy)
            best_valid_loss = entropy
        else:
            learnrate_schedular.rate = 0.0
    end_time = time.time()
    print 'The fine tuning ran for %.2fm' % ((end_time - start_time) / 60.)

    print 'Testing...'
    log_likelihood = []
    likelihoods = []
    test_frames_showed, progress = 0, 0
    start_test_time = time.time()  # it is also stop of training time
    dataprovider_test.reset()

    for feats_lab_tuple in dataprovider_test:

        features, labels = feats_lab_tuple

        if labels is None or features is None:
            continue

        test_frames_showed += features.shape[0]
        for temp, i in zip(features, xrange(len(labels))):
            temp_features1 = numpy.zeros(vocab_size, dtype='float32')
            temp_features2 = numpy.zeros(vocab_size, dtype='float32')
            temp_features3 = numpy.zeros(vocab_size, dtype='float32')
            temp_features1[temp[0]] = 1
            temp_features2[temp[1]] = 1
            temp_features3[temp[1]] = 1
            test_set_x1.set_value(numpy.asarray(temp_features1,
                                                dtype='float32'),
                                  borrow=True)
            test_set_x2.set_value(numpy.asarray(temp_features2,
                                                dtype='float32'),
                                  borrow=True)
            test_set_x3.set_value(numpy.asarray(temp_features3,
                                                dtype='float32'),
                                  borrow=True)
            test_set_y.set_value(numpy.asarray([labels[i]], dtype='int32'),
                                 borrow=True)
            out = test_model()
            log_likelihood.append(out[0])
            likelihoods.append(out[1])
        progress += 1
        if progress % 1000 == 0:
            end_time_test_progress = time.time()
            print 'PROGRESS: Processed %i bunches (%i frames),  TIME: %f in seconds'\
                           %(progress, test_frames_showed, end_time_test_progress - start_test_time)
    end_time_test_progress = time.time()
    print 'PROGRESS: Processed %i bunches (%i frames),  TIME: %f in seconds'\
                    %(progress, test_frames_showed, end_time_test_progress - start_test_time)
    print numpy.sum(log_likelihood)
Ejemplo n.º 2
0
def train_mlp(
        L1_reg=0.0,
        L2_reg=0.0000,
        num_batches_per_bunch=512,
        batch_size=1,
        num_bunches_queue=5,
        offset=0,
        path_name='/afs/inf.ed.ac.uk/user/s12/s1264845/scratch/s1264845/data/'
):

    voc_list = Vocabulary(path_name + 'train')
    voc_list.vocab_create()
    vocab = voc_list.vocab
    vocab_size = voc_list.vocab_size

    voc_list_valid = Vocabulary(path_name + 'valid')
    voc_list_valid.vocab_create()
    count = voc_list_valid.count

    voc_list_test = Vocabulary(path_name + 'test')
    voc_list_test.vocab_create()
    no_test_tokens = voc_list_test.count
    print 'The number of sentenses in test set:', no_test_tokens

    #print 'number of words in valid data:', count
    dataprovider_train = DataProvider(path_name + 'train', vocab, vocab_size)
    dataprovider_valid = DataProvider(path_name + 'valid', vocab, vocab_size)
    dataprovider_test = DataProvider(path_name + 'test', vocab, vocab_size)

    #learn_list = [0.1, 0.1, 0.1, 0.75, 0.5, 0.25, 0.125, 0.0625, 0]
    exp_name = 'fine_tuning.hdf5'
    posterior_path = 'log_likelihoods'
    print '..building the model'

    #symbolic variables for input, target vector and batch index
    index = T.lscalar('index')
    x = T.fmatrix('x')
    y = T.ivector('y')
    learning_rate = T.fscalar('learning_rate')

    #theano shares variables for train, valid and test
    train_set_x = theano.shared(numpy.empty((1, 1), dtype='float32'),
                                allow_downcast=True)
    train_set_y = theano.shared(numpy.empty((1), dtype='int32'),
                                allow_downcast=True)

    valid_set_x = theano.shared(numpy.empty((1, 1), dtype='float32'),
                                allow_downcast=True)
    valid_set_y = theano.shared(numpy.empty((1), dtype='int32'),
                                allow_downcast=True)

    test_set_x = theano.shared(numpy.empty((1, 1), dtype='float32'),
                               allow_downcast=True)
    test_set_y = theano.shared(numpy.empty((1), dtype='int32'),
                               allow_downcast=True)

    rng = numpy.random.RandomState(1234)

    classifier = MLP(rng=rng,
                     input=x,
                     n_in=vocab_size,
                     n_hidden1=30,
                     n_hidden2=60,
                     n_out=vocab_size)
    #classifier = MLP(rng = rng, input = x, n_in = vocab_size, n_hidden = 60, n_out = vocab_size)

    cost = classifier.negative_log_likelihood(
        y) + L1_reg * classifier.L1 + L2_reg * classifier.L2_sqr

    #constructor for learning rate class
    learnrate_schedular = LearningRateNewBob(start_rate=0.001, scale_by=.5, max_epochs=9999,\
                                    min_derror_ramp_start=.1, min_derror_stop=.1, init_error=100.)

    #learnrate_schedular = LearningRateList(learn_list)

    frame_error = classifier.errors(y)
    likelihood = classifier.sum(y)

    #test model
    test_model = theano.function(inputs = [index], outputs = likelihood,  \
                                 givens = {x: test_set_x[index * batch_size:(index + 1) * batch_size],
                                           y: test_set_y[index * batch_size:(index + 1) * batch_size]})
    #validation_model
    validate_model = theano.function(inputs = [index], outputs = [frame_error, likelihood], \
                                     givens = {x: valid_set_x[index * batch_size:(index + 1) * batch_size],
                                               y: valid_set_y[index * batch_size:(index + 1) * batch_size]})

    gradient_param = []
    #calculates the gradient of cost with respect to parameters
    for param in classifier.params:
        gradient_param.append(T.cast(T.grad(cost, param), 'float32'))

    updates = []

    for param, gradient in zip(classifier.params, gradient_param):
        updates.append((param, param - learning_rate * gradient))

    #training_model
    train_model = theano.function(inputs = [index, theano.Param(learning_rate, default = 0.01)], outputs = cost, updates = updates, \
                                 givens = {x: train_set_x[index * batch_size:(index + 1) * batch_size],
                                           y: train_set_y[index * batch_size:(index + 1) * batch_size]})

    #theano.printing.pydotprint(train_model, outfile = "pics/train.png", var_with_name_simple = True)
    #path_save = '/afs/inf.ed.ac.uk/user/s12/s1264845/scratch/s1264845/mlp/saved_weights/'
    print '.....training'
    best_valid_loss = numpy.inf
    epoch = 1
    start_time = time.time()
    while (learnrate_schedular.get_rate() != 0):

        print 'learning_rate:', learnrate_schedular.get_rate()
        print 'epoch_number:', learnrate_schedular.epoch

        frames_showed, progress = 0, 0
        start_epoch_time = time.time()

        tqueue = TNetsCacheSimple.make_queue()
        cache = TNetsCacheSimple(tqueue, shuffle_frames = True, offset=0, \
                                 batch_size = batch_size, num_batches_per_bunch = num_batches_per_bunch)
        cache.data_provider = dataprovider_train
        cache.start()

        train_cost = []
        while True:

            feats_lab_tuple = TNetsCacheSimple.get_elem_from_queue(tqueue)
            if isinstance(feats_lab_tuple, TNetsCacheLastElem):
                break

            features, labels = feats_lab_tuple
            train_set_x.set_value(features, borrow=True)
            train_set_y.set_value(numpy.asarray(labels.flatten(),
                                                dtype='int32'),
                                  borrow=True)

            frames_showed += features.shape[0]
            train_batches = features.shape[0] / batch_size
            #print train_batches
            #if there is any part left in utterance (smaller than a batch_size), take it into account at the end
            if (features.shape[0] % batch_size != 0
                    or features.shape[0] < batch_size):
                train_batches += 1

            for i in xrange(train_batches):
                #train_cost.append(train_model(i, learnrate_schedular.get_rate()))
                train_model(i, learnrate_schedular.get_rate())
            progress += 1
            if progress % 10 == 0:
                end_time_progress = time.time()
                print 'PROGRESS: Processed %i bunches (%i frames), TIME: %f in seconds'\
                          %(progress, frames_showed,(end_time_progress-start_epoch_time))

        end_time_progress = time.time()
        print 'PROGRESS: Processed %i bunches (%i frames), TIME: %f in seconds'\
                                 %(progress, frames_showed,(end_time_progress-start_epoch_time))
        train_set_x.set_value(numpy.empty((1, 1), dtype='float32'))
        train_set_y.set_value(numpy.empty((1), dtype='int32'))
        classifier_name = 'MLP' + str(learnrate_schedular.epoch)

        save_mlp(classifier,
                 GlobalCfg.get_working_dir() + exp_name, classifier_name)

        print 'Validating...'
        valid_losses = []
        log_likelihood = []
        valid_frames_showed, progress = 0, 0
        start_valid_time = time.time()  # it is also stop of training time
        #for feat_lab_tuple, path in HDFDatasetDataProviderUtt(devel_files_list, valid_dataset, randomize=False, max_utt=-10):
        #    features, labels = feat_lab_tuple

        tqueue = TNetsCacheSimple.make_queue()
        cache = TNetsCacheSimple(tqueue, offset=0, num_batches_per_bunch=16)

        #cache.deamon = True
        cache.data_provider = dataprovider_valid
        cache.start()

        #ex_num = 0

        while True:

            feats_lab_tuple = TNetsCacheSimple.get_elem_from_queue(tqueue)
            if isinstance(feats_lab_tuple, TNetsCacheLastElem):
                break

            features, labels = feats_lab_tuple

            valid_frames_showed += features.shape[0]
            valid_set_x.set_value(features, borrow=True)
            valid_set_y.set_value(numpy.asarray(labels.flatten(), 'int32'),
                                  borrow=True)

            valid_batches = features.shape[0] / batch_size
            #print valid_batches
            #if there is any part left in utterance (smaller than a batch_size), take it into account at the end
            if (features.shape[0] % batch_size != 0
                    or features.shape[0] < batch_size):
                valid_batches += 1

            for i in xrange(valid_batches):
                #ex_num = ex_num + 1
                out = validate_model(i)
                error_rate = out[0]
                likelihoods = out[1]
                valid_losses.append(error_rate)
                log_likelihood.append(likelihoods)
                #save_posteriors(likelihoods, GlobalCfg.get_working_dir() + posterior_path, str(ex_num), str(learnrate_schedular.epoch))

            progress += 1
            if progress % 10 == 0:
                end_time_valid_progress = time.time()
                print 'PROGRESS: Processed %i bunches (%i frames),  TIME: %f in seconds'\
                          %(progress, valid_frames_showed, end_time_valid_progress - start_valid_time)

        end_time_valid_progress = time.time()
        print 'PROGRESS: Processed %i bunches (%i frames),  TIME: %f in seconds'\
                          %(progress, valid_frames_showed, end_time_valid_progress - start_valid_time)
        valid_set_x.set_value(numpy.empty((1, 1), 'float32'))
        valid_set_y.set_value(numpy.empty((1), 'int32'))

        end_epoch_time = time.time()
        print 'time taken for this epoch in seconds: %f' % (end_epoch_time -
                                                            start_epoch_time)

        this_validation_loss = numpy.mean(valid_losses)
        loglikelihood_sum = numpy.sum(log_likelihood)
        #ppl = math.exp(- loglikelihood_sum /count)
        #print 'ppl:', ppl
        print 'error_rate:', this_validation_loss
        print 'valid log likelihood:', loglikelihood_sum
        #print 'mean log_probability', this_validation_loss
        #learnrate_schedular.get_next_rate(this_validation_loss * 100.)
        #learnrate_schedular.get_next_rate()
        #print 'epoch_number:', learnrate_schedular.epoch

        # logger.info('Epoch %i (lr: %f) took %f min (SPEED [presentations/second] training %f, cv %f), cv error %f %%' % \
        #         (self.cfg.finetune_scheduler.epoch-1, self.cfg.finetune_scheduler.get_rate(), \
        #          ((end_epoch_time-start_epoch_time)/60.0), (frames_showed/(start_valid_time-start_epoch_time)), \
        #          (valid_frames_showed/(stop_valid_time-start_valid_time)), this_validation_loss*100.))

        #self.cfg.finetune_scheduler.get_next_rate(this_validation_loss*100.)
        if this_validation_loss < best_valid_loss:
            learning_rate = learnrate_schedular.get_next_rate(
                this_validation_loss * 100.)
            best_valid_loss = this_validation_loss
    #best_epoch = learnrate_schedular.epoch-1
        else:
            #learnrate_schedular.epoch = learnrate_schedular.epoch + 1
            learnrate_schedular.rate = 0.0

    end_time = time.time()

    #print 'Optimization complete with best validation score of %f %%' %  best_valid_loss * 100.
    print 'The fine tuning ran for %.2fm' % ((end_time - start_time) / 60.)

    print 'Testing...'
    log_likelihood_test = []
    test_frames_showed, progress = 0, 0
    start_test_time = time.time()  # it is also stop of training time
    #for feat_lab_tuple, path in HDFDatasetDataProviderUtt(devel_files_list, valid_dataset, randomize=False, max_utt=-10):
    #    features, labels = feat_lab_tuple

    tqueue = TNetsCacheSimple.make_queue()
    cache = TNetsCacheSimple(tqueue, offset=0, num_batches_per_bunch=16)

    #cache.deamon = True
    cache.data_provider = dataprovider_test
    cache.start()

    #ex_num = 0

    while True:

        feats_lab_tuple = TNetsCacheSimple.get_elem_from_queue(tqueue)
        if isinstance(feats_lab_tuple, TNetsCacheLastElem):
            break

        features, labels = feats_lab_tuple

        test_frames_showed += features.shape[0]
        test_set_x.set_value(features, borrow=True)
        test_set_y.set_value(numpy.asarray(labels.flatten(), 'int32'),
                             borrow=True)

        test_batches = features.shape[0] / batch_size
        #print valid_batches
        #if there is any part left in utterance (smaller than a batch_size), take it into account at the end
        if (features.shape[0] % batch_size != 0
                or features.shape[0] < batch_size):
            test_batches += 1

        for i in xrange(test_batches):
            log_likelihood_test.append(test_model(i))

        progress += 1
        if progress % 10 == 0:
            end_time_test_progress = time.time()
            print 'PROGRESS: Processed %i bunches (%i frames),  TIME: %f in seconds'\
                           %(progress, test_frames_showed, end_time_test_progress - start_test_time)

    end_time_test_progress = time.time()
    print 'PROGRESS: Processed %i bunches (%i frames),  TIME: %f in seconds'\
                    %(progress, test_frames_showed, end_time_test_progress - start_test_time)
    test_set_x.set_value(numpy.empty((1, 1), 'float32'))
    test_set_y.set_value(numpy.empty((1), 'int32'))

    likelihood_sum = numpy.sum(log_likelihood_test)
    print 'likelihood_sum', likelihood_sum
Ejemplo n.º 3
0
def train_mlp(
        L1_reg=0.0,
        L2_reg=0.0000,
        num_batches_per_bunch=512,
        batch_size=1,
        num_bunches_queue=5,
        offset=0,
        path_name='/afs/inf.ed.ac.uk/user/s12/s1264845/scratch/s1264845/data/'
):

    voc_list = Vocabulary(path_name + 'train')
    voc_list.vocab_create()
    vocab = voc_list.vocab
    vocab_size = voc_list.vocab_size

    voc_list_valid = Vocabulary(path_name + 'valid')
    voc_list_valid.vocab_create()
    valid_words_count = voc_list_valid.count
    #print valid_words_count
    valid_lines_count = voc_list_valid.line_count
    #print valid_lines_count

    voc_list_test = Vocabulary(path_name + 'test')
    voc_list_test.vocab_create()
    test_words_count = voc_list_test.count
    #print test_words_count
    test_lines_count = voc_list_test.line_count
    #print test_lines_count

    dataprovider_train = DataProvider(path_name + 'train', vocab, vocab_size)
    dataprovider_valid = DataProvider(path_name + 'valid', vocab, vocab_size)
    dataprovider_test = DataProvider(path_name + 'test', vocab, vocab_size)

    #exp_name = 'fine_tuning.hdf5'

    print '..building the model'

    #symbolic variables for input, target vector and batch index
    index = T.lscalar('index')
    x = T.fvector('x')
    y = T.ivector('y')
    learning_rate = T.fscalar('learning_rate')

    #theano shared variables for train, valid and test
    train_set_x = theano.shared(numpy.empty((1), dtype='float32'),
                                allow_downcast=True)
    train_set_y = theano.shared(numpy.empty((1), dtype='int32'),
                                allow_downcast=True)

    valid_set_x = theano.shared(numpy.empty((1), dtype='float32'),
                                allow_downcast=True)
    valid_set_y = theano.shared(numpy.empty((1), dtype='int32'),
                                allow_downcast=True)

    test_set_x = theano.shared(numpy.empty((1), dtype='float32'),
                               allow_downcast=True)
    test_set_y = theano.shared(numpy.empty((1), dtype='int32'),
                               allow_downcast=True)

    rng = numpy.random.RandomState()

    classifier = MLP(rng=rng,
                     input=x,
                     n_in=vocab_size,
                     fea_dim=30,
                     context_size=2,
                     n_hidden=60,
                     n_out=vocab_size)

    cost = classifier.negative_log_likelihood(
        y) + L1_reg * classifier.L1 + L2_reg * classifier.L2_sqr

    #constructor for learning rate class
    learnrate_schedular = LearningRateNewBob(start_rate=0.005, scale_by=.5, max_epochs=9999,\
                                    min_derror_ramp_start=.01, min_derror_stop=.01, init_error=100.)

    #learnrate_schedular = LearningRateList(learn_list)

    frame_error = classifier.errors(y)
    likelihood = classifier.sum(y)

    #test_model
    test_model = theano.function(inputs = [], outputs = likelihood,  \
                                 givens = {x: test_set_x,
                                           y: test_set_y})
    #validation_model
    validate_model = theano.function(inputs = [], outputs = [frame_error, likelihood], \
                                     givens = {x: valid_set_x,
                                               y: valid_set_y})

    gradient_param = []
    #calculates the gradient of cost with respect to parameters
    for param in classifier.params:
        gradient_param.append(T.cast(T.grad(cost, param), 'float32'))

    updates = []
    #updates the parameters
    for param, gradient in zip(classifier.params, gradient_param):
        updates.append((param, param - learning_rate * gradient))

    #training_model
    train_model = theano.function(inputs = [theano.Param(learning_rate, default = 0.01)], outputs = cost, updates = updates, \
                                 givens = {x: train_set_x,
                                           y: train_set_y})

    training(dataprovider_train, dataprovider_valid, learnrate_schedular,
             classifier, train_model, validate_model, train_set_x, train_set_y,
             valid_set_x, valid_set_y, batch_size, num_batches_per_bunch,
             valid_words_count, valid_lines_count)
    testing(dataprovider_test, classifier, test_model, test_set_x, test_set_y,
            test_words_count, test_lines_count)
Ejemplo n.º 4
0
def train_rnn(num_batches_per_bunch = 512, batch_size = 1, num_bunches_queue = 5, offset = 0, path_name = '/exports/work/inf_hcrc_cstr_udialogue/siva/data/'):
    

    voc_list = Vocabulary(path_name + 'train')
    voc_list.vocab_create()
    vocab = voc_list.vocab
    vocab_size = voc_list.vocab_size
     
    dataprovider_train = DataProvider(path_name + 'train', vocab, vocab_size)
    dataprovider_valid = DataProvider(path_name + 'valid', vocab, vocab_size )
    dataprovider_test = DataProvider(path_name + 'test', vocab, vocab_size )
    
    print '..building the model'

    #symbolic variables for input, target vector and batch index
    index = T.lscalar('index')
    x = T.fvector('x')
    h0 = T.fvector('h0')
    y = T.ivector('y')
    learning_rate = T.fscalar('learning_rate') 

    #theano shared variables for train, valid and test
    train_set_x1 = theano.shared(numpy.empty((1,), dtype='float32'), allow_downcast = True)
    train_set_y = theano.shared(numpy.empty((1), dtype = 'int32'), allow_downcast = True)
    
    valid_set_x1 = theano.shared(numpy.empty((1,), dtype='float32'), allow_downcast = True)
    valid_set_y = theano.shared(numpy.empty((1), dtype = 'int32'), allow_downcast = True)
    
    test_set_x1 = theano.shared(numpy.empty((1,), dtype='float32'), allow_downcast = True)
    test_set_y = theano.shared(numpy.empty((1), dtype = 'int32'), allow_downcast = True)
    
    
    rng = numpy.random.RandomState()
   
    classifier = RNN(rng = rng, input = x, intial_hidden = h0, n_in = vocab_size, n_hidden = int(sys.argv[1]), n_out = vocab_size)
    
    cost = classifier.negative_log_likelihood(y)

    ht1_values = numpy.ones((int(sys.argv[1]), ), dtype = 'float32')
    
    ht1 = theano.shared(value = ht1_values, name = 'hidden_state')
    
    #constructor for learning rate class
    learnrate_schedular = LearningRateNewBob(start_rate = float(sys.argv[2]), scale_by=.5, max_epochs=9999,\
                                    min_derror_ramp_start=.01, min_derror_stop=.01, init_error=100.)

    log_likelihood = classifier.sum(y)
    likelihood = classifier.likelihood(y)
    
    #test_model
    test_model = theano.function(inputs = [], outputs = [log_likelihood, likelihood],  \
                                 givens = {x: test_set_x1,
                                           y: test_set_y,
                                           h0: ht1})
    #validation_model
    validate_model = theano.function(inputs = [], outputs = [log_likelihood], \
                                     givens = {x: valid_set_x1,
                                               y: valid_set_y,
                                               h0: ht1})

    gradient_param = []
    #calculates the gradient of cost with respect to parameters 
    for param in classifier.params:
        gradient_param.append(T.cast(T.grad(cost, param), 'float32'))
        
    updates = []
    #updates the parameters
    for param, gradient in zip(classifier.params, gradient_param):
        updates.append((param, T.cast(param - learning_rate * gradient - 0.000001 * param, dtype = 'float32')))
    
    #hidden_output = classifier.inputlayer.output
    #training_model
    train_model = theano.function(inputs = [learning_rate], outputs = [cost, classifier.inputlayer.output], updates = updates, \
                                 givens = {x: train_set_x1,
                                           y: train_set_y,
                                           h0:ht1})

    print '.....training'
    best_valid_loss = numpy.inf    
    start_time = time.time()
    while(learnrate_schedular.get_rate() != 0):
    
        print 'learning_rate:', learnrate_schedular.get_rate()
        print 'epoch_number:', learnrate_schedular.epoch        
        frames_showed, progress = 0, 0
        start_epoch_time = time.time()
        dataprovider_train.reset()
 
        for feats_lab_tuple in dataprovider_train:
    
            features, labels = feats_lab_tuple 
            
            if labels is None or features is None:
                continue                             
            frames_showed += features.shape[0]

            for temp, i in zip(features, xrange(len(labels))):
                temp_features1 = numpy.zeros(vocab_size, dtype = 'float32')
                temp_features1[temp[0]] = 1
                train_set_x1.set_value(numpy.asarray(temp_features1, dtype = 'float32'), borrow = True)
                train_set_y.set_value(numpy.asarray([labels[i]], dtype = 'int32'), borrow = True)
                out = train_model(numpy.asarray(learnrate_schedular.get_rate(), dtype = 'float32'))       
                ht1.set_value(numpy.asarray(out[1], dtype = 'float32'), borrow = True)
            progress += 1
            if progress%10000==0:
                end_time_progress = time.time()
                print 'PROGRESS: Processed %i bunches (%i frames), TIME: %f in seconds'\
                          %(progress, frames_showed,(end_time_progress-start_epoch_time))
            train_set_x1.set_value(numpy.empty((1, ), dtype = 'float32'))
            train_set_y.set_value(numpy.empty((1), dtype = 'int32'))
        
        end_time_progress = time.time()
        print 'PROGRESS: Processed %i bunches (%i frames), TIME: %f in seconds'\
                          %(progress, frames_showed,(end_time_progress-start_epoch_time))
	
        #classifier_name = 'MLP' + str(learnrate_schedular.epoch)
        #save_mlp(classifier, path+exp_name1 , classifier_name)
    
        print 'Validating...'
        valid_losses = []
        log_likelihood = []
        valid_frames_showed, progress = 0, 0
        start_valid_time = time.time() # it is also stop of training time
        dataprovider_valid.reset()

        for feats_lab_tuple in dataprovider_valid:            
            features, labels = feats_lab_tuple            
            if labels is None or features is None:
                continue                             
            valid_frames_showed += features.shape[0]                
            for temp, i in zip(features, xrange(len(labels))):
                temp_features1 = numpy.zeros(vocab_size, dtype = 'float32')
                temp_features1[temp[0]] = 1
                valid_set_x1.set_value(numpy.asarray(temp_features1, dtype = 'float32'), borrow = True)
                valid_set_y.set_value(numpy.asarray([labels[i]], dtype = 'int32'), borrow = True)
                log_likelihood.append(validate_model())
            valid_set_x1.set_value(numpy.empty((1), 'float32'))
            valid_set_y.set_value(numpy.empty((1), 'int32'))

            progress += 1
            if progress%1000==0:
                end_time_valid_progress = time.time()
                print 'PROGRESS: Processed %i bunches (%i frames),  TIME: %f in seconds'\
                          %(progress, valid_frames_showed, end_time_valid_progress - start_valid_time)
        
        end_time_valid_progress = time.time()
        print 'PROGRESS: Processed %i bunches (%i frames),  TIME: %f in seconds'\
                          %(progress, valid_frames_showed, end_time_valid_progress - start_valid_time)            
        entropy = (-numpy.sum(log_likelihood)/valid_frames_showed)
        print  entropy, numpy.sum(log_likelihood)

        if entropy < best_valid_loss:
           learning_rate = learnrate_schedular.get_next_rate(entropy)
	   best_valid_loss = entropy
        else:
           learnrate_schedular.rate = 0.0
    end_time = time.time()
    print 'The fine tuning ran for %.2fm' %((end_time-start_time)/60.)

    print 'Testing...'
    log_likelihood = []
    likelihoods = []
    test_frames_showed, progress = 0, 0
    start_test_time = time.time() # it is also stop of training time
    dataprovider_test.reset()
    
    for feats_lab_tuple in dataprovider_test:
        
        features, labels = feats_lab_tuple 
            
        if labels is None or features is None:
            continue                             

        test_frames_showed += features.shape[0]                
        for temp, i in zip(features, xrange(len(labels))):
            temp_features1 = numpy.zeros(vocab_size, dtype = 'float32')
            temp_features1[temp[0]] = 1
            test_set_x1.set_value(numpy.asarray(temp_features1, dtype = 'float32'), borrow = True)
            test_set_y.set_value(numpy.asarray([labels[i]], dtype = 'int32'), borrow = True)
            out = test_model()
            log_likelihood.append(out[0])
            likelihoods.append(out[1])
        progress += 1
        if progress%1000==0:
           end_time_test_progress = time.time()
           print 'PROGRESS: Processed %i bunches (%i frames),  TIME: %f in seconds'\
                          %(progress, test_frames_showed, end_time_test_progress - start_test_time)
    end_time_test_progress = time.time()
    print 'PROGRESS: Processed %i bunches (%i frames),  TIME: %f in seconds'\
                    %(progress, test_frames_showed, end_time_test_progress - start_test_time)            
    #save_posteriors(log_likelihood, likelihoods, weight_path+file_name2)
    print numpy.sum(log_likelihood)