Ejemplo n.º 1
0
def load_model(weights_fpath, verbose=True):
    global _model, _device

    if verbose:
        print("Building Wave-RNN")
    _model = WaveRNN(rnn_dims=hp.voc_rnn_dims,
                     fc_dims=hp.voc_fc_dims,
                     bits=hp.bits,
                     pad=hp.voc_pad,
                     upsample_factors=hp.voc_upsample_factors,
                     feat_dims=hp.num_mels,
                     compute_dims=hp.voc_compute_dims,
                     res_out_dims=hp.voc_res_out_dims,
                     res_blocks=hp.voc_res_blocks,
                     hop_length=hp.hop_length,
                     sample_rate=hp.sample_rate,
                     mode=hp.voc_mode)

    if torch.cuda.is_available():
        _model = _model.cuda()
        _device = torch.device('cuda')
    else:
        _device = torch.device('cpu')

    if verbose:
        print("Loading model weights at %s" % weights_fpath)
    checkpoint = torch.load(weights_fpath, _device)
    _model.load_state_dict(checkpoint['model_state'])
    _model.eval()
Ejemplo n.º 2
0
def train(run_id: str, syn_dir: Path, voc_dir: Path, models_dir: Path,
          ground_truth: bool, save_every: int, backup_every: int,
          force_restart: bool):
    # Check to make sure the hop length is correctly factorised
    assert np.cumprod(hp.voc_upsample_factors)[-1] == hp.hop_length

    # Instantiate the model
    print("Initializing the model...")
    model = WaveRNN(rnn_dims=hp.voc_rnn_dims,
                    fc_dims=hp.voc_fc_dims,
                    bits=hp.bits,
                    pad=hp.voc_pad,
                    upsample_factors=hp.voc_upsample_factors,
                    feat_dims=hp.num_mels,
                    compute_dims=hp.voc_compute_dims,
                    res_out_dims=hp.voc_res_out_dims,
                    res_blocks=hp.voc_res_blocks,
                    hop_length=hp.hop_length,
                    sample_rate=hp.sample_rate,
                    mode=hp.voc_mode)

    if torch.cuda.is_available():
        model = model.cuda()
        device = torch.device('cuda')
    else:
        device = torch.device('cpu')

    # Initialize the optimizer
    optimizer = optim.Adam(model.parameters())
    for p in optimizer.param_groups:
        p["lr"] = hp.voc_lr
    loss_func = F.cross_entropy if model.mode == "RAW" else discretized_mix_logistic_loss

    # Load the weights
    model_dir = models_dir.joinpath(run_id)
    model_dir.mkdir(exist_ok=True)
    weights_fpath = model_dir.joinpath(run_id + ".pt")
    if force_restart or not weights_fpath.exists():
        print("\nStarting the training of WaveRNN from scratch\n")
        model.save(weights_fpath, optimizer)
    else:
        print("\nLoading weights at %s" % weights_fpath)
        model.load(weights_fpath, optimizer)
        print("WaveRNN weights loaded from step %d" % model.step)

    # Initialize the dataset
    metadata_fpath = syn_dir.joinpath("train.txt") if ground_truth else \
        voc_dir.joinpath("synthesized.txt")
    mel_dir = syn_dir.joinpath("mels") if ground_truth else voc_dir.joinpath(
        "mels_gta")
    wav_dir = syn_dir.joinpath("audio")
    dataset = VocoderDataset(metadata_fpath, mel_dir, wav_dir)
    test_loader = DataLoader(dataset,
                             batch_size=1,
                             shuffle=True,
                             pin_memory=True)

    # Begin the training
    simple_table([('Batch size', hp.voc_batch_size), ('LR', hp.voc_lr),
                  ('Sequence Len', hp.voc_seq_len)])

    for epoch in range(1, 350):
        data_loader = DataLoader(
            dataset,
            collate_fn=collate_vocoder,
            batch_size=hp.voc_batch_size,
            num_workers=2 if platform.system() != "Windows" else 0,
            shuffle=True,
            pin_memory=True)
        start = time.time()
        running_loss = 0.

        for i, (x, y, m) in enumerate(data_loader, 1):
            if torch.cuda.is_available():
                x, m, y = x.cuda(), m.cuda(), y.cuda()

            # Forward pass
            y_hat = model(x, m)
            if model.mode == 'RAW':
                y_hat = y_hat.transpose(1, 2).unsqueeze(-1)
            elif model.mode == 'MOL':
                y = y.float()
            y = y.unsqueeze(-1)

            # Backward pass
            loss = loss_func(y_hat, y)
            optimizer.zero_grad()
            loss.backward()
            optimizer.step()

            running_loss += loss.item()
            speed = i / (time.time() - start)
            avg_loss = running_loss / i

            step = model.get_step()
            k = step // 1000

            if backup_every != 0 and step % backup_every == 0:
                model.checkpoint(model_dir, optimizer)

            if save_every != 0 and step % save_every == 0:
                model.save(weights_fpath, optimizer)

            msg = f"| Epoch: {epoch} ({i}/{len(data_loader)}) | " \
                f"Loss: {avg_loss:.4f} | {speed:.1f} " \
                f"steps/s | Step: {k}k | "
            stream(msg)

        gen_testset(model, test_loader, hp.voc_gen_at_checkpoint,
                    hp.voc_gen_batched, hp.voc_target, hp.voc_overlap,
                    model_dir)
        print("")