Ejemplo n.º 1
0
def test_stitch():
    vertices = np.zeros((10, 3), np.float32)
    vertices[:, 0] = np.arange(10)

    # Make 3 and 6 duplicates of 2 and 4, respectively
    vertices[3] = vertices[2]
    vertices[6] = vertices[4]

    faces = [[0, 1, 2], [3, 4, 5], [6, 7, 8],
             [7, 8, 4]]  # <- duplicate face (different vertex order, and 4=6)

    # After mapping away from dupe vertices
    remapped_faces = [[0, 1, 2], [2, 4, 5], [4, 7, 8],
                      [7, 8, 4]]  # duplicated face (different vertex order)

    remapped_faces = np.array(remapped_faces)

    # After dropping dupe rows
    remapped_faces[(remapped_faces > 6)] -= 1
    remapped_faces[(remapped_faces > 3)] -= 1

    # Drop last face (duplicated)
    remapped_faces = remapped_faces[:-1, :]

    reduced_vertices = list(vertices)
    del reduced_vertices[9]  # wasn't referenced to begin with
    del reduced_vertices[6]  # was duplicated
    del reduced_vertices[3]  # was duplicated
    reduced_vertices = np.asarray(reduced_vertices)

    mesh = Mesh(vertices, faces)
    mesh.stitch_adjacent_faces()

    assert (mesh.faces == remapped_faces).all()
    assert (mesh.vertices_zyx == reduced_vertices).all()
Ejemplo n.º 2
0
    def test_smoothing_hexagon(self):
        """
        Try 'smoothing' a simple 2D hexagon, which is an easy case to understand.
        """
        # This map is correctly labeled with the vertex indices
        _ = -1
        hexagon = [[[_, _, _, _, _, _, _], [_, _, 0, _, 1, _, _],
                    [_, _, _, _, _, _, _], [_, 2, _, 3, _, 4, _],
                    [_, _, _, _, _, _, _], [_, _, 5, _, 6, _, _],
                    [_, _, _, _, _, _, _]]]

        hexagon = 1 + np.array(hexagon)
        original_vertices_zyx = np.transpose(hexagon.nonzero())
        faces = [[3, 1, 4], [3, 4, 6], [3, 6, 5], [3, 5, 2], [3, 2, 0],
                 [3, 0, 1]]

        mesh = Mesh(original_vertices_zyx, faces)
        #mesh.serialize('/tmp/hexagon.obj')

        mesh.laplacian_smooth(1)
        #mesh.serialize('/tmp/hexagon-smoothed.obj')

        # Since vertex 3 is exactly centered between the rest,
        # it's location never changes.
        assert (mesh.vertices_zyx[3] == original_vertices_zyx[3]).all()
Ejemplo n.º 3
0
def test_tiny_array():
    """
    Tiny arrays trigger an exception in skimage, so they must be padded first.
    Verify that they can be meshified (after padding).
    """
    one_voxel = np.ones((1, 1, 1), np.uint8)
    _mesh = Mesh.from_binary_vol(one_voxel, [(0, 0, 0), (1, 1, 1)],
                                 method='skimage')
    _mesh = Mesh.from_binary_vol(one_voxel, [(0, 0, 0), (1, 1, 1)],
                                 method='ilastik')
Ejemplo n.º 4
0
    def test_smoothing_trivial(self):
        vertices_zyx = np.array([[0.0, 0.0, 0.0], [0.0, 0.0, 1.0],
                                 [0.0, 0.0, 2.0]])

        # This "face" is actually straight line,
        # which makes it easy to see what's going on
        faces = np.array([[0, 1, 2]])
        mesh = Mesh(vertices_zyx, faces)
        average_vertex = vertices_zyx.sum(axis=0) / 3
        mesh.laplacian_smooth(1)
        assert (mesh.vertices_zyx == average_vertex).all()
Ejemplo n.º 5
0
def test_trim(binary_vol_input):
    mesh = Mesh.from_binary_vol(binary_vol_input[0])
    mesh.fragment_origin = np.array([25, 25, 25])
    mesh.fragment_shape = np.array([50, 50, 50])
    num_faces = len(mesh.faces)
    mesh.trim()
    assert len(mesh.faces) < num_faces

    mesh = Mesh.from_binary_vol(binary_vol_input[0])
    mesh.fragment_origin = np.array([125, 125, 125])
    mesh.fragment_shape = np.array([50, 50, 50])
    mesh.trim()
    assert len(mesh.faces) == 0
Ejemplo n.º 6
0
def test_compress(binary_vol_input):
    binary_vol, data_box, _nonzero_box = binary_vol_input
    mesh_orig = Mesh.from_binary_vol(binary_vol, data_box)
    uncompressed_size = mesh_orig.normals_zyx.nbytes + mesh_orig.vertices_zyx.nbytes + mesh_orig.faces.nbytes
    mesh = copy.deepcopy(mesh_orig)

    size = mesh.compress('lz4')
    assert size < uncompressed_size
    assert (mesh.faces == mesh_orig.faces).all()
    assert (mesh.vertices_zyx == mesh_orig.vertices_zyx).all()
    assert (mesh.normals_zyx == mesh_orig.normals_zyx).all()

    # Draco is lossy, so we can't compare exactly.
    # Just make sure the arrays are at least of the correct shape.
    size = mesh.compress('draco')
    assert size < uncompressed_size
    assert (mesh.faces.shape == mesh_orig.faces.shape)
    assert (mesh.vertices_zyx.shape == mesh_orig.vertices_zyx.shape)
    assert (mesh.normals_zyx.shape == mesh_orig.normals_zyx.shape)

    mesh = copy.deepcopy(mesh_orig)
    mesh.fragment_shape = np.asarray(data_box[1])
    mesh.fragment_origin = np.asarray(data_box[0])
    size = mesh.compress('custom_draco')
    assert size < uncompressed_size
    assert (mesh.faces.shape == mesh_orig.faces.shape)
    assert (mesh.vertices_zyx.shape == mesh_orig.vertices_zyx.shape)
    assert (mesh.normals_zyx.shape == mesh_orig.normals_zyx.shape)
Ejemplo n.º 7
0
    def test_basic(self):
        # Pretend the data was downsampled and translated,
        # and therefore the mesh requires upscaling and translation
        data_box = np.array(self.data_box)
        data_box += 1000

        nonzero_box = self.nonzero_box + 1000

        FACTOR = 2
        data_box *= FACTOR
        nonzero_box *= FACTOR

        mesh = Mesh.from_binary_vol(self.binary_vol, data_box)
        assert mesh.vertices_zyx.dtype == np.float32

        mesh_box = np.array(
            [mesh.vertices_zyx.min(axis=0),
             mesh.vertices_zyx.max(axis=0)])
        assert (mesh_box == nonzero_box
                ).all(), f"{mesh_box.tolist()} != {nonzero_box.tolist()}"

        serialized = mesh.serialize(fmt='obj')
        unserialized = mesh.from_buffer(serialized, 'obj')
        assert len(unserialized.vertices_zyx) == len(mesh.vertices_zyx)

        serialized = mesh.serialize(fmt='drc')
        unserialized = mesh.from_buffer(serialized, 'drc')
        assert len(unserialized.vertices_zyx) == len(mesh.vertices_zyx)

        serialized = mesh.serialize(fmt='ngmesh')
        unserialized = mesh.from_buffer(serialized, 'ngmesh')
        assert len(unserialized.vertices_zyx) == len(mesh.vertices_zyx)
Ejemplo n.º 8
0
    def test_blockwise(self):
        data_box = np.array(self.data_box)
        blocks = []
        boxes = []
        for z in range(0, 100, 20):
            for y in range(0, 100, 20):
                for x in range(0, 100, 20):
                    OVERLAP = 1
                    box = np.asarray([(z, y, x), (z + 20, y + 20, x + 20)],
                                     dtype=int)
                    box[0] -= OVERLAP
                    box[1] += OVERLAP
                    box = np.maximum(box, 0)
                    box = np.minimum(box, 1 + data_box[1])

                    block = self.binary_vol[box_to_slicing(*box)]
                    if block.any():
                        blocks.append(block)
                        boxes.append(box)

        mesh = Mesh.from_binary_blocks(blocks, boxes)
        data_box = np.array(self.data_box)
        mesh_box = np.array(
            [mesh.vertices_zyx.min(axis=0),
             mesh.vertices_zyx.max(axis=0)])
        assert (mesh_box == self.nonzero_box
                ).all(), f"{mesh_box.tolist()} != {self.nonzero_box.tolist()}"
Ejemplo n.º 9
0
        def process_body(body_id):
            with resource_mgr_client.access_context( input_config["server"], True, 1, 0 ):
                tar_bytes = fetch_tarfile(server, uuid, tsv_instance, body_id)

            sv_meshes = Mesh.from_tarfile(tar_bytes, concatenate=False)
            sv_meshes = {int(os.path.splitext(name)[0]): m for name, m in sv_meshes.items()}

            total_body_vertices = sum([len(m.vertices_zyx) for m in sv_meshes.values()])
            decimation = min(1.0, max_body_vertices / total_body_vertices)

            try:
                _process_sv = partial(process_sv, decimation, decimation_lib, max_sv_vertices, output_format)
                if num_procs <= 1:
                    output_table = [*starmap(_process_sv, sv_meshes.items())]
                else:
                    output_table = compute_parallel(_process_sv, sv_meshes.items(), starmap=True, processes=num_procs, ordered=False, show_progress=False)

                cols = ['sv', 'orig_vertices', 'final_vertices', 'final_decimation', 'effective_decimation', 'mesh_bytes']
                output_df = pd.DataFrame(output_table, columns=cols)
                output_df['body'] = body_id
                output_df['error'] = ""
                write_sv_meshes(output_df, output_config, output_format, resource_mgr_client)
            except Exception as ex:
                svs = [*sv_meshes.keys()]
                orig_vertices = [len(m.vertices_zyx) for m in sv_meshes.values()]
                output_df = pd.DataFrame({'sv': svs, 'orig_vertices': orig_vertices})
                output_df['final_vertices'] = -1
                output_df['final_decimation'] = -1
                output_df['effective_decimation'] = -1
                output_df['mesh_bytes'] = -1
                output_df['body'] = body_id
                output_df['error'] = str(ex)

            return output_df.drop(columns=['mesh_bytes'])
Ejemplo n.º 10
0
    def test_blockwise_simple(self):
        """
        Simple test case to manually explore the output
        of marching cubes as computed in blocks without halo.
        """
        _ = 0
        img = [[_, _, _, _, _, 1, _, _], [_, 1, _, _, _, _, _, _],
               [_, _, 1, 1, 1, 1, 1, _], [_, 1, 1, 1, 1, 1, 1, _],
               [_, 1, 1, 1, 1, 1, 1, _], [_, 1, 1, 1, 1, 1, 1, _],
               [_, 1, 1, 1, 1, 1, 1, _], [_, _, _, _, _, _, _, _]]

        vol = np.zeros((3, 8, 8), dtype=bool)
        vol[1] = img

        blocks = (vol[:, 0:4, 0:4], vol[:, 0:4, 4:8], vol[:, 4:8,
                                                          0:4], vol[:, 4:8,
                                                                    4:8])

        starts = [[0, 0, 0], [0, 0, 4], [0, 4, 0], [0, 4, 4]]

        starts = np.array(starts)
        boxes = np.zeros((4, 2, 3), np.uint32)
        boxes[:, 0, :] = starts
        boxes[:, 1, :] = starts + (3, 4, 4)

        _mesh = Mesh.from_binary_blocks(blocks[3:4], boxes[3:4], stitch=False)
Ejemplo n.º 11
0
    def test_pickling_empty(self):
        mesh = Mesh(np.zeros((0, 3), np.float32), np.zeros((0, 3), np.uint32))
        pickled = pickle.dumps(mesh)
        unpickled = pickle.loads(pickled)

        assert len(unpickled.vertices_zyx) == 0
        assert len(unpickled.faces) == 0
Ejemplo n.º 12
0
    def test_smoothing_X(self):
        """
        This just exercises the code on our standard X-shaped
        test object, but doesn't verify the results.
        
        Uncomment the serialize() lines to inspect the effects manually.
        """
        mesh = Mesh.from_binary_vol(self.binary_vol, self.data_box)
        #mesh.serialize('/tmp/x-unsmoothed.obj')

        mesh.simplify(0.2)
        mesh.laplacian_smooth(5)
        #mesh.serialize('/tmp/x-simplified-smoothed.obj')

        mesh = Mesh.from_binary_vol(self.binary_vol, self.data_box)
        mesh.laplacian_smooth(5)
        mesh.simplify(0.2)
Ejemplo n.º 13
0
    def setUp(self):
        self.vertexes_1 = np.array([[0, 0, 0], [0, 1, 0], [0, 1, 1]])

        self.faces_1 = np.array([[2, 1, 0]])

        self.vertexes_2 = np.array([[0, 0, 1], [0, 2, 0], [0, 2, 2]])

        self.faces_2 = np.array([[2, 1, 0], [1, 2, 0]])

        self.vertexes_3 = np.array([[1, 0, 1], [1, 2, 0], [1, 2, 2]])

        self.faces_3 = np.array([[1, 2, 0]])

        self.mesh_1 = Mesh(self.vertexes_1, self.faces_1)
        self.mesh_2 = Mesh(self.vertexes_2, self.faces_2)
        self.mesh_3 = Mesh(self.vertexes_3, self.faces_3)
        self.mesh_4 = Mesh(np.zeros((0, 3), np.float32),
                           np.zeros((0, 3), np.uint32))  # Empty mesh
Ejemplo n.º 14
0
    def test_pickling(self):
        mesh = Mesh.from_binary_vol(self.binary_vol)
        pickled = pickle.dumps(mesh)
        unpickled = pickle.loads(pickled)

        # It's not easy to verify that unpickled is identical,
        # since draco may re-order vertices and faces.
        # The validity of our draco encoding functions is tested elsewhere,
        # so here we just check for vertex/face count
        assert len(mesh.vertices_zyx) == len(unpickled.vertices_zyx)
        assert len(mesh.faces) == len(unpickled.faces)
Ejemplo n.º 15
0
def tiny_meshes():
    vertexes_1 = np.array([[0, 0, 0], [0, 1, 0], [0, 1, 1]])

    faces_1 = np.array([[2, 1, 0]])

    vertexes_2 = np.array([[0, 0, 1], [0, 2, 0], [0, 2, 2]])

    faces_2 = np.array([[2, 1, 0], [1, 2, 0]])

    vertexes_3 = np.array([[1, 0, 1], [1, 2, 0], [1, 2, 2]])

    faces_3 = np.array([[1, 2, 0]])

    mesh_1 = Mesh(vertexes_1, faces_1)
    mesh_2 = Mesh(vertexes_2, faces_2)
    mesh_3 = Mesh(vertexes_3, faces_3)
    mesh_4 = Mesh(np.zeros((0, 3), np.float32), np.zeros(
        (0, 3), np.uint32))  # Empty mesh

    return mesh_1, mesh_2, mesh_3, mesh_4
Ejemplo n.º 16
0
def test_basic(binary_vol_input):
    binary_vol, data_box, nonzero_box = binary_vol_input
    # Pretend the data was downsampled and translated,
    # and therefore the mesh requires upscaling and translation
    data_box = np.array(data_box)
    data_box += 1000

    nonzero_box = nonzero_box + 1000

    FACTOR = 2
    data_box *= FACTOR
    nonzero_box *= FACTOR

    mesh = Mesh.from_binary_vol(binary_vol, data_box)
    assert mesh.vertices_zyx.dtype == np.float32

    mesh_box = np.array(
        [mesh.vertices_zyx.min(axis=0),
         mesh.vertices_zyx.max(axis=0)])
    assert (mesh_box == nonzero_box
            ).all(), f"{mesh_box.tolist()} != {nonzero_box.tolist()}"

    serialized = mesh.serialize(fmt='obj')
    unserialized = mesh.from_buffer(serialized, 'obj')
    assert len(unserialized.vertices_zyx) == len(mesh.vertices_zyx)

    serialized = mesh.serialize(fmt='drc')
    unserialized = mesh.from_buffer(serialized, 'drc')
    assert len(unserialized.vertices_zyx) == len(mesh.vertices_zyx)

    mesh = Mesh.from_binary_vol(binary_vol,
                                data_box,
                                fragment_shape=np.asarray(data_box[1]),
                                fragment_origin=np.asarray(data_box[0]))
    serialized = mesh.serialize(fmt='custom_drc')
    unserialized = mesh.from_buffer(serialized, 'drc')
    assert len(unserialized.vertices_zyx) == len(mesh.vertices_zyx)

    serialized = mesh.serialize(fmt='ngmesh')
    unserialized = mesh.from_buffer(serialized, 'ngmesh')
    assert len(unserialized.vertices_zyx) == len(mesh.vertices_zyx)
Ejemplo n.º 17
0
    def test_solid_array(self):
        """
        Solid volumes can't be meshified. An empty mesh is returned instead.
        """
        box = [(0, 0, 0), (3, 3, 3)]
        solid_volume = np.ones((3, 3, 3), np.uint8)

        mesh = Mesh.from_binary_vol(solid_volume, box)
        assert mesh.vertices_zyx.shape == (0, 3)
        assert mesh.faces.shape == (0, 3)
        assert mesh.normals_zyx.shape == (0, 3)
        assert (mesh.box == box).all()
Ejemplo n.º 18
0
def test_normals_implementations(binary_vol_input):
    """
    Compare the numpy-based and numba-based normals computation implementations.
    """
    binary_vol, data_box, _nonzero_box = binary_vol_input

    try:
        from vol2mesh.normals import (compute_face_normals,
                                      compute_face_normals_numba,
                                      compute_face_normals_numpy,
                                      compute_vertex_normals,
                                      compute_vertex_normals_numba,
                                      compute_vertex_normals_numpy)
    except ImportError:
        pytest.skip("numba not installed")

    mesh = Mesh.from_binary_vol(binary_vol, data_box)

    face_normals_default = compute_face_normals(mesh.vertices_zyx,
                                                mesh.faces,
                                                normalize=True)
    face_normals_numba = compute_face_normals_numba(mesh.vertices_zyx,
                                                    mesh.faces,
                                                    normalize=True)
    face_normals_numpy = compute_face_normals_numpy(mesh.vertices_zyx,
                                                    mesh.faces,
                                                    normalize=True)
    assert np.allclose(face_normals_numba, face_normals_default)
    assert np.allclose(face_normals_numba, face_normals_numpy)

    vertex_normals_default = compute_vertex_normals(
        mesh.vertices_zyx,
        mesh.faces,
        weight_by_face_area=False,
        face_normals=face_normals_default)
    vertex_normals_numba = compute_vertex_normals_numba(
        mesh.vertices_zyx,
        mesh.faces,
        weight_by_face_area=False,
        face_normals=face_normals_numba)
    vertex_normals_numpy = compute_vertex_normals_numpy(
        mesh.vertices_zyx,
        mesh.faces,
        weight_by_face_area=False,
        face_normals=face_normals_numpy)
    assert np.allclose(vertex_normals_numba, vertex_normals_default)
    assert np.allclose(vertex_normals_numba, vertex_normals_numpy)
Ejemplo n.º 19
0
    def test_compress(self):
        mesh_orig = Mesh.from_binary_vol(self.binary_vol, self.data_box)
        uncompressed_size = mesh_orig.normals_zyx.nbytes + mesh_orig.vertices_zyx.nbytes + mesh_orig.faces.nbytes
        mesh = copy.deepcopy(mesh_orig)

        size = mesh.compress('lz4')
        assert size < uncompressed_size
        assert (mesh.faces == mesh_orig.faces).all()
        assert (mesh.vertices_zyx == mesh_orig.vertices_zyx).all()
        assert (mesh.normals_zyx == mesh_orig.normals_zyx).all()

        # Draco is lossy, so we can't compare exactly.
        # Just make sure the arrays are at least of the correct shape.
        size = mesh.compress('draco')
        assert size < uncompressed_size
        assert (mesh.faces.shape == mesh_orig.faces.shape)
        assert (mesh.vertices_zyx.shape == mesh_orig.vertices_zyx.shape)
        assert (mesh.normals_zyx.shape == mesh_orig.normals_zyx.shape)
Ejemplo n.º 20
0
def process_sv(decimation, decimation_lib, max_sv_vertices, output_format, sv: int, mesh: Mesh):
    try:
        orig_vertices = len(mesh.vertices_zyx)
        if orig_vertices == 0:
            final_decimation = 1.0
        else:
            final_decimation = min(decimation, max_sv_vertices / len(mesh.vertices_zyx))
            if decimation_lib == "openmesh":
                mesh.simplify_openmesh(final_decimation)
            elif decimation_lib == "fq-in-memory":
                mesh.simplify(decimation, True)
            elif decimation_lib == "fq-via-disk":
                mesh.simplify(decimation, False)
            else:
                raise AssertionError()

        final_vertices = len(mesh.vertices_zyx)
        effective_decimation = final_vertices / orig_vertices
        mesh_bytes = mesh.serialize(fmt=output_format)
        return sv, orig_vertices, final_vertices, final_decimation, effective_decimation, mesh_bytes
    except Exception as ex:
        raise RuntimeError(f"Failed processing SV {sv}: {type(ex)}") from ex
Ejemplo n.º 21
0
 def test_empty_mesh(self):
     """
     What happens when we call functions on an empty mesh?
     """
     mesh = Mesh(np.zeros((0, 3), np.float32), np.zeros((0, 3), int))
     mesh.simplify(1.0)
     assert len(mesh.vertices_zyx) == len(mesh.normals_zyx) == len(
         mesh.faces) == 0
     mesh.simplify(0.1)
     assert len(mesh.vertices_zyx) == len(mesh.normals_zyx) == len(
         mesh.faces) == 0
     mesh.laplacian_smooth(0)
     assert len(mesh.vertices_zyx) == len(mesh.normals_zyx) == len(
         mesh.faces) == 0
     mesh.laplacian_smooth(2)
     assert len(mesh.vertices_zyx) == len(mesh.normals_zyx) == len(
         mesh.faces) == 0
     mesh.stitch_adjacent_faces()
     assert len(mesh.vertices_zyx) == len(mesh.normals_zyx) == len(
         mesh.faces) == 0
     mesh.serialize(fmt='obj')
     assert len(mesh.vertices_zyx) == len(mesh.normals_zyx) == len(
         mesh.faces) == 0
     mesh.serialize(fmt='drc')
     assert len(mesh.vertices_zyx) == len(mesh.normals_zyx) == len(
         mesh.faces) == 0
     mesh.compress()
     concatenate_meshes((mesh, mesh))
     assert len(mesh.vertices_zyx) == len(mesh.normals_zyx) == len(
         mesh.faces) == 0
Ejemplo n.º 22
0
    def test_normals_guarantees(self):
        """
        Member functions have guarantees about whether normals are present or absent after the function runs.
        - simplify(): Always present afterwards
        - laplacian_smooth(): Always present afterwards
        - stitch_adjacent_faces(): Present afterwards IFF they were present before.
        """
        data_box = np.array(self.data_box)

        FACTOR = 2
        data_box *= FACTOR

        mesh_orig = Mesh.from_binary_vol(self.binary_vol, data_box)

        mesh = copy.deepcopy(mesh_orig)
        assert mesh.normals_zyx.shape[0] > 1

        # Verify normals are always present after simplification,
        # Regardless of whether or not they were present before,
        # or if simplification was even performed.
        mesh.simplify(1.0)
        assert mesh.normals_zyx.shape[0] > 1

        mesh.simplify(0.5)
        assert mesh.normals_zyx.shape[0] > 1

        mesh.drop_normals()
        mesh.simplify(0.5)
        assert mesh.normals_zyx.shape[0] > 1

        # Verify normals are always present after smoothing,
        # Regardless of whether or not they were present before,
        # or if smoothing was even performed.
        mesh = copy.deepcopy(mesh_orig)
        mesh.laplacian_smooth(0)
        assert mesh.normals_zyx.shape[0] > 1

        mesh.laplacian_smooth(2)
        assert mesh.normals_zyx.shape[0] > 1

        mesh.drop_normals()
        mesh.laplacian_smooth(2)
        assert mesh.normals_zyx.shape[0] > 1

        # Verify that the presence or absence of normals is the SAME after stitching,
        # Whether or not stitching had any effect.

        # no stitching, keep normals
        mesh = copy.deepcopy(mesh_orig)
        stitching_performed = mesh.stitch_adjacent_faces()
        assert not stitching_performed
        assert mesh.normals_zyx.shape[0] > 1

        # no stitching, no normals in the first place
        mesh.drop_normals()
        stitching_performed = mesh.stitch_adjacent_faces()
        assert not stitching_performed
        assert mesh.normals_zyx.shape[0] == 0

        # stitching, generate normals
        mesh = copy.deepcopy(mesh_orig)
        duplicated_mesh = concatenate_meshes([mesh, mesh])
        assert duplicated_mesh.normals_zyx.shape[0] > 1
        stitching_performed = duplicated_mesh.stitch_adjacent_faces()
        assert stitching_performed
        assert duplicated_mesh.normals_zyx.shape[0] > 1

        # stitching, no normals in the first place
        mesh = copy.deepcopy(mesh_orig)
        duplicated_mesh = concatenate_meshes([mesh, mesh])
        duplicated_mesh.drop_normals()
        stitching_performed = duplicated_mesh.stitch_adjacent_faces()
        assert stitching_performed
        assert duplicated_mesh.normals_zyx.shape[0] == 0