Ejemplo n.º 1
0
    def test_doc_035(self):
        import numpy as np

        # Define the 2 independent variables
        phi, theta = np.meshgrid(np.linspace(0, 2 * np.pi, 1024),
                                 np.linspace(0, np.pi, 1024))

        # Calculate the x, y, z values to form a sphere
        x = np.cos(phi) * np.sin(theta)
        y = np.sin(phi) * np.sin(theta)
        z = np.cos(theta)

        # You can play around with this. The coordinates must be zipped
        # together into one array with ``shape[-1] == 2``, hence the
        # ``vpl.zip_axes``. And must be between 0 and 1, hence the ``% 1.0``.
        texture_coords = (vpl.zip_axes(phi * 3, theta * 5) / np.pi) % 1.0

        # Pick an image to use. There is a picture of a shark here if you
        # don't have one available.
        path = vpl.data.ICONS["Right"]
        texture_map = vpl.TextureMap(path, interpolate=True)

        # You could convert ``texture_coords`` to ``colors`` now using.
        # colors = texture_map(texture_coords)
        # then pass ``colors`` as the `scalars` argument instead.

        vpl.surface(x, y, z, scalars=texture_coords, texture_map=texture_map)
Ejemplo n.º 2
0
def test_surface():
    thi, theta = np.meshgrid(np.linspace(0, 2 * np.pi, 100),
                             np.linspace(0, np.pi, 50))

    x = np.cos(thi) * np.sin(theta)
    y = np.sin(thi) * np.sin(theta)
    z = np.cos(theta)

    vpl.surface(x, y, z, scalars=x.ravel())
Ejemplo n.º 3
0
    def test_doc_09(self):
        import vtkplotlib as vpl
        import numpy as np

        phi, theta = np.meshgrid(np.linspace(0, 2 * np.pi, 1024),
                                 np.linspace(0, np.pi, 1024))

        x = np.cos(phi) * np.sin(theta)
        y = np.sin(phi) * np.sin(theta)
        z = np.cos(theta)

        vpl.surface(x, y, z)
Ejemplo n.º 4
0
def test_texture():

    phi, theta = np.meshgrid(np.linspace(0, 2 * np.pi, 1024),
                             np.linspace(0, np.pi, 1024))

    x = np.cos(phi) * np.sin(theta)
    y = np.sin(phi) * np.sin(theta)
    z = np.cos(theta)

    self = vpl.surface(x, y, z, fig=None)
    path = vpl.data.ICONS["Right"]
    self.polydata.texture_map = vpl.TextureMap(path, interpolate=True)
    self.colors = (vpl.zip_axes(phi * 3, theta * 5) / np.pi) % 1.

    self.connect()
    vpl.gcf().add_plot(self)