Ejemplo n.º 1
0
def build_tweet(mention, grade):
    print grade
    seeds = []
    mentions = []

    mentions1 = []
    for m in api.morphs(api.sentences(r['text'])['sentences'][0])['morphs']:
        mentions1.append(to_chainform(m).split(':')[0])
    r_now = ' '.join(mentions1)[4:-4]
    SV = w2v_dialog.sentence_vectorizer('matrix25.w7.model')
    w2v_list = SV.use_database('NTCIR.wakati.u20', r_now.encode('utf-8'))
    seeds.append(''.join(w2v_list[0].split()))
    seeds.append(''.join(w2v_list[1].split()))
    seeds.append(''.join(w2v_list[2].split()))
    #print r['text']
    print "w2v_list", '\n'.join(w2v_list)
    #api.send_reply(name, r['mention_id'], r['user_name'], ''.join(w2v_list[0].split()))


    for sent in api.sentences(mention)['sentences']:
        for m in api.morphs(sent)['morphs']:
            mentions.append(to_chainform(m))
            if m['pos'][-2] == u'名' and m['pos'] != u'代名詞' :
                #print m
                seeds.append(m)
        #print seeds
    texts = []
    for _ in range(0, 5):
        if not seeds: seeds = [{ u'norm_surface': u'BOS', u'pos': u'BOS' }]
        for s in seeds:
            pass
            #print s[u'norm_surface']
            #c = api.markov_chain(s)
            #texts.append(to_string(api.rewrite(c, grade)))
    print " ".join(mentions)
    trigger_result = api.trigger(mentions, grade)
    texts += trigger_result
    texts += trigger_result
    texts += trigger_result
    print '\n'.join(trigger_result)

    for s in seeds:
        pass
        #print api.search_tweet(s[u'norm_surface'])
        #for t in api.search_tweet(s[u'norm_surface'])[u'texts']:
        #    for sent in api.sentences(t)['sentences']:
        #        texts.append(to_string(api.rewrite([to_chainform(m) for m in api.morphs(sent)['morphs']], grade)))
        #        #print to_string(api.rewrite([to_chainform(m) for m in api.morphs(sent)['morphs']]))
        #for t in api.search_reply(s[u'norm_surface'])[u'texts']:
        #    for sent in api.sentences(t)['sentences']:
        #        texts.append(to_string(api.rewrite([to_chainform(m) for m in api.morphs(sent)['morphs']], grade)))
                #print to_string(api.rewrite([to_chainform(m) for m in api.morphs(sent)['morphs']]))

    texts = seeds
    random.shuffle(texts)
    print texts[0]
    return texts[0]
Ejemplo n.º 2
0
#!/usr/bin/python
# coding:utf-8

from api import API
import w2v_dialog
import MeCab
from crontab import CronTab

with API() as api:
    # ツイートする
    # api.tweet('tweet test2')

    SV = w2v_dialog.sentence_vectorizer('/work/asakura/bot/matrix50.model')

    # リプを取得
    for mention in api.get_mentions():
        text = mention['text']
        tweet_id = mention['id_str']
        screen_name = mention['user']['screen_name']
        # ユーザ情報(プロフィール)
        name = mention['user']['name']
        zone = mention['user']['time_zone']
        location = mention['user']['location']
        description = mention['user']['description']
        print mention
        #print text, tweet_id, screen_name, name, zone, location, description

        tagger = MeCab.Tagger('-Owakati')
        #result = tagger.parse(' '.join(text.split()[1:]).decode('utf-8'))
        result = tagger.parse(' '.join(text.split()[1:]).encode('utf-8'))