def test_circfuncs(self): x = np.array([355,5,2,359,10,350]) M = stats.circmean(x, high=360) Mval = 0.167690146 assert_allclose(M, Mval, rtol=1e-7) V = stats.circvar(x, high=360) Vval = 42.51955609 assert_allclose(V, Vval, rtol=1e-7) S = stats.circstd(x, high=360) Sval = 6.520702116 assert_allclose(S, Sval, rtol=1e-7)
def test_circfuncs_small(self): x = np.array([20,21,22,18,19,20.5,19.2]) M1 = x.mean() M2 = stats.circmean(x, high=360) assert_allclose(M2, M1, rtol=1e-5) V1 = x.var() V2 = stats.circvar(x, high=360) assert_allclose(V2, V1, rtol=1e-4) S1 = x.std() S2 = stats.circstd(x, high=360) assert_allclose(S2, S1, rtol=1e-4)
def test_circfuncs_small(self): x = np.array([20, 21, 22, 18, 19, 20.5, 19.2]) M1 = x.mean() M2 = stats.circmean(x, high=360) assert_allclose(M2, M1, rtol=1e-5) V1 = x.var() V2 = stats.circvar(x, high=360) assert_allclose(V2, V1, rtol=1e-4) S1 = x.std() S2 = stats.circstd(x, high=360) assert_allclose(S2, S1, rtol=1e-4)
def test_circfuncs(self): x = np.array([355, 5, 2, 359, 10, 350]) M = stats.circmean(x, high=360) Mval = 0.167690146 assert_allclose(M, Mval, rtol=1e-7) V = stats.circvar(x, high=360) Vval = 42.51955609 assert_allclose(V, Vval, rtol=1e-7) S = stats.circstd(x, high=360) Sval = 6.520702116 assert_allclose(S, Sval, rtol=1e-7)
def test_circstd_axis(self): x = np.array([[355, 5, 2, 359, 10, 350], [351, 7, 4, 352, 9, 349], [357, 9, 8, 358, 4, 356]]) S1 = stats.circstd(x, high=360) S2 = stats.circstd(x.ravel(), high=360) assert_allclose(S1, S2, rtol=1e-11) S1 = stats.circstd(x, high=360, axis=1) S2 = [stats.circstd(x[i], high=360) for i in range(x.shape[0])] assert_allclose(S1, S2, rtol=1e-11) S1 = stats.circstd(x, high=360, axis=0) S2 = [stats.circstd(x[:, i], high=360) for i in range(x.shape[1])] assert_allclose(S1, S2, rtol=1e-11)
def test_circstd_axis(self): x = np.array([[355,5,2,359,10,350], [351,7,4,352,9,349], [357,9,8,358,4,356]]) S1 = stats.circstd(x, high=360) S2 = stats.circstd(x.ravel(), high=360) assert_allclose(S1, S2, rtol=1e-11) S1 = stats.circstd(x, high=360, axis=1) S2 = [stats.circstd(x[i], high=360) for i in range(x.shape[0])] assert_allclose(S1, S2, rtol=1e-11) S1 = stats.circstd(x, high=360, axis=0) S2 = [stats.circstd(x[:,i], high=360) for i in range(x.shape[1])] assert_allclose(S1, S2, rtol=1e-11)
def test_empty(self): assert_(np.isnan(stats.circmean([]))) assert_(np.isnan(stats.circstd([]))) assert_(np.isnan(stats.circvar([])))
def test_circfuncs_array_like(self): x = [355,5,2,359,10,350] assert_allclose(stats.circmean(x, high=360), 0.167690146, rtol=1e-7) assert_allclose(stats.circvar(x, high=360), 42.51955609, rtol=1e-7) assert_allclose(stats.circstd(x, high=360), 6.520702116, rtol=1e-7)
def test_circfuncs_array_like(self): x = [355, 5, 2, 359, 10, 350] assert_allclose(stats.circmean(x, high=360), 0.167690146, rtol=1e-7) assert_allclose(stats.circvar(x, high=360), 42.51955609, rtol=1e-7) assert_allclose(stats.circstd(x, high=360), 6.520702116, rtol=1e-7)