Ejemplo n.º 1
0
def test_apply_as_bilinear_form():
    """
    Testing u^T A v operation.
    """
    # Testing assembled case.
    op = fe_op.make_from_data(np.array([[1.0, 5.0], [3.0, 3.0]]),
                              fe_op.AssemblyType.ASSEMBLED)
    v = np.array([1.0, 1.0])
    u = np.array([2.0, 0.5])
    np_test.assert_almost_equal(fe_op.apply_as_linear_form(op, u, v), 15.0)

    # Testing lumped case.
    op = fe_op.make_from_data(np.array([1.0, 5.0]), fe_op.AssemblyType.LUMPED)
    np_test.assert_almost_equal(fe_op.apply_as_linear_form(op, u, v),
                                9.0 / 2.0)
Ejemplo n.º 2
0
def test_clone():
    """
    Testing cloning of finite element operators.
    """
    # Testing assembled case.
    op0 = fe_op.make_from_data(np.diag(np.array([1.0, 1.0, 1.0])),
                               fe_op.AssemblyType.ASSEMBLED)
    op1 = fe_op.clone(666.0, op0)
    np_test.assert_array_almost_equal(666.0 * op0.data.todense(),
                                      op1.data.todense())

    # Testing lumped case.
    op0 = fe_op.make_from_data(np.array([1.0, 1.0, 1.0]),
                               fe_op.AssemblyType.LUMPED)
    op1 = fe_op.clone(666.0, op0)
    np_test.assert_array_almost_equal(666.0 * op0.data, op1.data)
Ejemplo n.º 3
0
def test_inv():
    """
    Testing inplace inversion of finite element operators.
    """
    dense_mat = np.array([[4., 2., 1.], [2., 4., 1.], [1., 1., 3.]])

    # Testing assembled case.
    op = fe_op.make_from_data(dense_mat, fe_op.AssemblyType.ASSEMBLED)
    fe_op.inv(op)
    np_test.assert_array_almost_equal(op.data.todense(),
                                      np.linalg.inv(dense_mat))

    # Testing lumped case.
    op = fe_op.make_from_data(np.array([1.0, 2.0, 3.0]),
                              fe_op.AssemblyType.LUMPED)
    fe_op.inv(op)
    np_test.assert_array_almost_equal(op.data, [1.0, 0.5, 1.0 / 3.0])
Ejemplo n.º 4
0
def test_add_value():
    """
    Testing adding value at specific DoF index in finite element operator.
    """
    # Testing assembled case.
    warnings.simplefilter('ignore', SparseEfficiencyWarning)
    op0 = fe_op.make_from_data(np.diag(np.array([1.0, 1.0])),
                               fe_op.AssemblyType.ASSEMBLED)
    fe_op.add_value(op0, 666.0, 0, 1)
    np_test.assert_array_almost_equal(op0.data.todense(),
                                      np.array([[1.0, 666.0], [0.0, 1.0]]))
    warnings.resetwarnings()

    # Testing lumped case.
    op0 = fe_op.make_from_data(np.array([1.0, 1.0]), fe_op.AssemblyType.LUMPED)
    fe_op.add_value(op0, 665.0, 1, 1)
    np_test.assert_array_almost_equal(op0.data, np.array([1.0, 666.0]))
Ejemplo n.º 5
0
def test_linear_combination():
    """
    Testing combination of finite element operators.
    """
    # Testing assembled case.
    op0 = fe_op.make_from_data(np.diag(np.array([1.0, 1.0, 1.0])),
                               fe_op.AssemblyType.ASSEMBLED)
    op1 = fe_op.make_from_data(np.diag(np.array([2.0, 2.0, 2.0])),
                               fe_op.AssemblyType.ASSEMBLED)
    op2 = fe_op.linear_combination(2.0, op0, 0.5, op1)
    np_test.assert_array_almost_equal(op2.data.todense(),
                                      np.diag(np.array([3.0, 3.0, 3.0])))

    # Testing lumped case.
    op0 = fe_op.make_from_data(np.array([1.0, 1.0, 1.0]),
                               fe_op.AssemblyType.LUMPED)
    op1 = fe_op.make_from_data(np.array([2.0, 2.0, 2.0]),
                               fe_op.AssemblyType.LUMPED)
    op2 = fe_op.linear_combination(2.0, op0, 0.5, op1)
    np_test.assert_array_almost_equal(op2.data, [3.0, 3.0, 3.0])

    # Testing lumped and assembled case.
    op0 = fe_op.make_from_data(np.array([1.0, 1.0, 1.0]),
                               fe_op.AssemblyType.LUMPED)
    op1 = fe_op.make_from_data(np.diag(np.array([2.0, 2.0, 2.0])),
                               fe_op.AssemblyType.ASSEMBLED)
    op2 = fe_op.linear_combination(2.0, op0, 0.5, op1)
    np_test.assert_array_almost_equal(op2.data.todense(),
                                      np.diag(np.array([3.0, 3.0, 3.0])))
Ejemplo n.º 6
0
def test_mlt():
    """
    Testing multiplication operation on finite element operators.
    """
    # Testing assembled case.
    op = fe_op.make_from_data(np.diag(np.array([1.0, 2.0, 3.0])),
                              fe_op.AssemblyType.ASSEMBLED)

    u = np.array([1.0, 1.0, 1.0])
    v = np.array([666.0, 666.0, 666.0])
    fe_op.mlt(op, u, v)

    np_test.assert_array_almost_equal(v, [1.0, 2.0, 3.0])

    # Testing lumped case.
    op = fe_op.make_from_data(np.array([1.0, 2.0, 3.0]),
                              fe_op.AssemblyType.LUMPED)

    u = np.array([1.0, 1.0, 1.0])
    v = np.array([666.0, 666.0, 666.0])
    fe_op.mlt(op, u, v)

    np_test.assert_array_almost_equal(v, [1.0, 2.0, 3.0])
Ejemplo n.º 7
0
def test_mlt_add():
    """
    Testing addition & multiplication operation on finite element operators.
    """
    # Testing assembled case.
    op = fe_op.make_from_data(np.diag(np.array([1.0, 2.0, 3.0])),
                              fe_op.AssemblyType.ASSEMBLED)

    u = np.array([1.0, 1.0, 1.0])
    v = np.array([2.0, 3.0, 4.0])
    fe_op.mlt_add(op, u, v, coef=2.0)

    np_test.assert_array_almost_equal(v, [4.0, 7.0, 10.0])

    # Testing lumped case.
    op = fe_op.make_from_data(np.array([1.0, 2.0, 3.0]),
                              fe_op.AssemblyType.LUMPED)

    u = np.array([1.0, 1.0, 1.0])
    v = np.array([2.0, 3.0, 4.0])
    fe_op.mlt_add(op, u, v)

    np_test.assert_array_almost_equal(v, [3.0, 5.0, 7.0])
Ejemplo n.º 8
0
def test_spectral_radius():
    """
    Testing computation of spectral radius.
    """
    # Testing on diagonal matrices.
    m = 2.0
    k = 4.0
    Mop = fe_op.make_from_data(np.diag(np.array([m, m, m])),
                               fe_op.AssemblyType.ASSEMBLED)
    Kop = fe_op.make_from_data(np.diag(np.array([k, k, k])),
                               fe_op.AssemblyType.ASSEMBLED)
    radius = fe_op.spectral_radius(Mop, Kop)
    np_test.assert_almost_equal(radius, 2.0)

    # testing with varying mass values
    m = 2.0
    k = 4.0
    Mop = fe_op.make_from_data(np.diag(np.array([3 * m, 2 * m, m])),
                               fe_op.AssemblyType.ASSEMBLED)
    Kop = fe_op.make_from_data(np.diag(np.array([k, k, k])),
                               fe_op.AssemblyType.ASSEMBLED)
    radius = fe_op.spectral_radius(Mop, Kop)
    np_test.assert_almost_equal(radius, 2.0)
Ejemplo n.º 9
0
def test_apply_pseudo_elimination():
    """
    Tests pseudo elimination.
    """
    # Testing assembled case.
    op0 = fe_op.make_from_data(np.array([[1.0, 5.0], [2.0, 3.0]]),
                               fe_op.AssemblyType.ASSEMBLED)
    fe_op.apply_pseudo_elimination(op0, 1)
    np_test.assert_array_almost_equal(op0.data.todense(),
                                      np.array([[1.0, 0.0], [0.0, 1.0]]))

    # Testing assembled case.
    op0 = fe_op.make_from_data(
        np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]]),
        fe_op.AssemblyType.ASSEMBLED)
    fe_op.apply_pseudo_elimination(op0, 1)
    np_test.assert_array_almost_equal(
        op0.data.todense(),
        np.array([[1.0, 0.0, 3.0], [0.0, 1.0, 0.0], [7.0, 0.0, 9.0]]))

    # Testing lumped case.
    op0 = fe_op.make_from_data(np.array([1.0, 5.0]), fe_op.AssemblyType.LUMPED)
    fe_op.apply_pseudo_elimination(op0, 1)
    np_test.assert_array_almost_equal(op0.data, np.array([1.0, 1.0]))
Ejemplo n.º 10
0
# Step 2: perform Newton iterative descent
# ========================================

propag_builder = partial(elastic_propagator.Elastic,
                         fe_space=fe_space,
                         mass_assembly_type=fe_op.AssemblyType.LUMPED,
                         stiffness_assembly_type=fe_op.AssemblyType.ASSEMBLED)

k = stiffness_assembler.assemble_stiffness(fe_space)
minv = mass_assembler.assemble_mass(fe_space,
                                    density=alpha,
                                    assembly_type=fe_op.AssemblyType.LUMPED)
fe_op.inv(minv)
minv.data = scipy.sparse.dia_matrix((minv.data, [0]), shape=k.data.shape)
minv_k = fe_op.make_from_data(minv.data * k.data,
                              assembly_type=fe_op.AssemblyType.ASSEMBLED)

current_theta = THETA_INIT
convergence_reached = False
step = 0

while not convergence_reached:
    dthetaJ = JREGUL * current_theta
    d2thetaJ = JREGUL

    # Building the propagators for the current descent step
    current_beta = partial(beta, theta=current_theta)

    config_theta = configuration.Elastic(alpha=alpha,
                                         beta=current_beta,
                                         left_bc=left_bc)