Ejemplo n.º 1
0
def fitBCMax():

    tree = TChain("skimTree")
    tree.Add("~/project/cal-lat/latSkimDS3*")

    cutFile = TFile("~/project/lat/latSkimDS3_0_0.root")
    theCut = cutFile.Get("theCut").GetTitle()

    # scatter plot
    h0 = wl.H2D(tree,"h0",100,0,20,500,parLim[0],parLim[1],thisVar+":trapENFCal",theCut)

    # fitModel10 = "[0] + [1]*x + [2]*x**2 + [3] * exp(-1.0 * ((x-[4])**2 / (2 * [5]**2)) )"

    h1 = wl.H1D(tree,"h1",20,9.5,11.5,"trapENFCal",theCut)
    h2 = wl.H1D(tree,"h2",20,9.5,11.5,"trapENFCal",theCut+checkCut)

    f0 = TF1("f0","gaus",10,11)
    h1.Fit("f0","Lq")
    [norm,mu,sig] = wl.GetPars(f0)

    f1 = TF1("f1", fitModel10, 9.5,11)
    wl.SetPars(f1,[-209, 41, -2, norm, mu, sig])
    f1.SetLineColor(4)
    h1.Fit("f1","Lq")
    [p0,p1,p2,norm1,mu,sig] = wl.GetPars(f1)

    f2 = TF1("f2", fitModel10, 9.5,11)
    wl.SetPars(f2,[-209, 41, -2, norm1, mu, sig])
    f2.SetLineColor(2)
    h2.Fit("f2","Lq")
    [p0,p1,p2,norm2,mu,sig] = wl.GetPars(f2)

    retention = 100*norm2/norm1
    print "Retention:",retention," Cut used:",checkCut
Ejemplo n.º 2
0
Archivo: lat3.py Proyecto: gothman5/LAT
def MakeCutPlot(c,cal,var,eb,elo,ehi,vb,vlo,vhi,d2Cut,d1Cut,outPlot,fastMode):
    """ Creates a channel-specific energy calibration plot. """

    # Calculate cut vals (assumes plot range is correct)
    h1 = wl.H1D(cal,vb,vlo,vhi,var,d1Cut)
    h1Sum = h1.Integral()
    if h1Sum == 0:
        print "Error: Failed %s, histogram sum is 0 so cannot normalize, setting to [0,0,0,0,0]"%(var)
        return 0,0,0,0,0
    h1.Scale(1/h1Sum)
    try:
        cut99,cut95,cut01,cut05,cut90 = wl.GetIntegralPoints(h1)
    except:
        print "Error: Failed %s using cut %s, setting to [0,0,0,0,0]"%(var,d1Cut)
        return 0,0,0,0,0
    if fastMode:
        print "Returning fastMode output: ", cut99,cut95,cut01,cut05,cut90
        return cut99,cut95,cut01,cut05,cut90

    # Generate the plot for inspection.
    c.cd(2)
    gPad.SetLogy(0)
    h1.GetXaxis().SetRangeUser(cut01-abs(0.25*cut01), cut99 + abs(0.25*cut99) )
    h1.SetTitle("")
    h1.GetXaxis().SetTitle(var)
    h1.Draw("hist")

    c.cd(1)
    gPad.SetLogy(0)
    cal.Draw("%s:trapENFCal>>b(%d,%d,%d,%d,%.3E,%.3E)"%(var,eb+10,elo-5,ehi+5,vb,cut01-abs(0.25*cut01),cut99+abs(0.25*cut99)) ,d2Cut)

    l1, l2, l3 = TLine(), TLine(), TLine()
    l1.SetLineColor(ROOT.kGreen)
    l2.SetLineColor(ROOT.kRed)
    l3.SetLineColor(ROOT.kMagenta)

    l1.DrawLine(elo-5, cut99, ehi+5, cut99)
    l2.DrawLine(elo-5, cut95, ehi+5, cut95)
    l2.DrawLine(elo-5, cut05, ehi+5, cut05)
    l1.DrawLine(elo-5, cut01, ehi+5, cut01)

    c.cd(3)
    x_h1, y_h1 = wl.npTH1D(h1)
    int_h1 = wl.integFunc(y_h1)
    g2 = TGraph(len(x_h1), x_h1, int_h1)
    g2.GetXaxis().SetRangeUser(cut01-abs(0.3*cut01), cut99 + abs(0.3*cut99) )
    g2.SetTitle("")
    g2.GetXaxis().SetTitle(var)
    g2.GetYaxis().SetTitle("Percentile")
    g2.Draw("ACP")
    l1.DrawLine(cut99, 0, cut99, 1)
    l2.DrawLine(cut95, 0, cut95, 1)
    l1.DrawLine(cut01, 0, cut01, 1)
    l2.DrawLine(cut05, 0, cut05, 1)

    c.Print(outPlot)
    return cut99,cut95,cut01,cut05,cut90
Ejemplo n.º 3
0
def MakeCutPlot(c, cal, var, eb, elo, ehi, vb, vlo, vhi, d2Draw, d2Cut, d1Cut,
                outPlot, fastMode):
    """ Repeated code is the DEVIL.  Even if you have to pass in 1,000,000 arguments. """

    # Calculate cut vals (assumes plot range is correct)
    h1 = wl.H1D(cal, vb, vlo, vhi, var, d1Cut)
    h1Sum = h1.Integral()
    if h1Sum == 0:
        return 0, 0, 0, 0, 0
    h1.Scale(1 / h1Sum)
    cut99, cut95, cut01, cut05, cut90 = wl.GetIntegralPoints(h1)
    if fastMode:
        return cut99, cut95, cut01, cut05, cut90

    # Generate the plot for inspection.
    c.cd(2)
    gPad.SetLogy(0)
    h1.Draw("hist")

    c.cd(1)
    gPad.SetLogy(0)
    cal.Draw(d2Draw, d2Cut)

    l1, l2 = TLine(), TLine()
    l1.SetLineColor(ROOT.kGreen)
    l2.SetLineColor(ROOT.kRed)

    l1.DrawLine(elo, cut99, ehi, cut99)
    l2.DrawLine(elo, cut95, ehi, cut95)
    l2.DrawLine(elo, cut05, ehi, cut05)
    l1.DrawLine(elo, cut01, ehi, cut01)

    c.cd(3)
    x_h1, y_h1 = wl.npTH1D(h1)
    int_h1 = wl.integFunc(y_h1)
    g2 = TGraph(len(x_h1), x_h1, int_h1)
    g2.Draw("ACP")
    l1.DrawLine(cut99, 0, cut99, 1)
    l2.DrawLine(cut95, 0, cut95, 1)
    l1.DrawLine(cut01, 0, cut01, 1)
    l2.DrawLine(cut05, 0, cut05, 1)

    c.Print(outPlot)
    return cut99, cut95, cut01, cut05, cut90
Ejemplo n.º 4
0
def main(argv):

    inDir, cutDir, outDir = ".", ".", "./plots"
    specMode = False
    dsNum, modNum, chNum = -1, -1, -1
    skimTree = ROOT.TChain("skimTree")
    bins, lower, upper = {1250}, 0, 250
    outFile = ROOT.TFile()
    for i, opt in enumerate(argv):
        if opt == "-spec":
            specMode = True
            print "Spectrum Mode"
        if opt == "-d":
            inDir, outDir = argv[i + 1], argv[i + 2]
        if opt == "-ch":
            chNum = int(argv[i + 1])
            print("Drawing specific channel %d" % (chNum))
        if opt == "-s":
            dsNum, modNum = int(argv[i + 1]), int(argv[i + 2])
            print("Drawing DS-%d Module-%d" % (dsNum, modNum))
        if opt == "-cal":
            calMode = True
            print("Drawing Calibration runs")

    cInfo = ds.CalInfo()
    EnergyList = [[1., 5.], [2., 4.], [4., 9.], [9., 12.], [12., 40.],
                  [40., 50.], [50., 100.]]

    # -- Load channel list --
    if chNum == -1:
        chList = ds.GetGoodChanList(dsNum)
        if dsNum == 5 and modNum == 1:  # remove 692 and 1232
            chList = [
                584, 592, 598, 608, 610, 614, 624, 626, 628, 632, 640, 648,
                658, 660, 662, 672, 678, 680, 688, 690, 694
            ]
        if dsNum == 5 and modNum == 2:
            # chList = [1106, 1110, 1120, 1124, 1128, 1170, 1172, 1174, 1176, 1204, 1208, 1298, 1302, 1330, 1332]
            # Removed ch 1110, 1208, and 1332
            chList = [
                1106, 1120, 1124, 1128, 1170, 1172, 1174, 1176, 1204, 1298,
                1302, 1330
            ]
    else:
        chList = [chNum]

    # -- Load calibration files --
    if dsNum == -1 or modNum == -1:
        print "DS, subDS, or module number not set properly, exiting"
        return
    else:
        # Limit to 10 calibration runs because that's all Clint processed!
        for subNum in cInfo.master["ds%d_m%d" % (dsNum, modNum)].keys():
            calList = cInfo.GetCalList("ds%d_m%d" % (dsNum, modNum),
                                       subNum,
                                       runLimit=10)
            for i in calList:
                skimTree.Add("%s/latSkimDS%d_run%d_*" % (inDir, dsNum, i))

    # List of histograms (for summing together) and Dictionary of histograms (for different cuts)
    hList, hDict = [], {}

    # Create a list of DataFrames for each channel to concatenate at the end
    # cutNames = ["BasicCut", "+tailSlope", "+riseNoise", "+fitSlo"]
    cutNames = ["BasicCut", "+riseNoise", "+fitSlo"]
    # cutNames = ["BasicCut", "+tailSlope", "+bcMax", "+fitSlo"]

    if specMode:
        outFile = ROOT.TFile("%s/CalibHistograms_DS%d.root" % (outDir, dsNum),
                             "RECREATE")

    for subNum in cInfo.master["ds%d_m%d" % (dsNum, modNum)].keys():
        runCut = "&&run>=%d&&run<=%d" % (
            cInfo.master["ds%d_m%d" % (dsNum, modNum)][subNum][1],
            cInfo.master["ds%d_m%d" % (dsNum, modNum)][subNum][2])

        # DB style
        fsD = ds.getDBRecord("fitSlo_ds%d_idx%d_m%d_Peak" %
                             (dsNum, subNum, modNum))
        rnD = ds.getDBRecord("riseNoise_ds%d_idx%d_m%d_Peak" %
                             (dsNum, subNum, modNum))
        bcD = ds.getDBRecord("bcMax_ds%d_idx%d_m%d_Peak" %
                             (dsNum, subNum, modNum))

        # Get threshold info
        # goodRuns,badRuns,goodRunSigmas = ds.GetThreshDicts(dsNum)
        # threshrunCut = "&&("
        # for idx2,runRange in enumerate(goodRuns[ch]):
        #     threshrunCut += "(run>=%d&&run<=%d)||" % (runRange[0],runRange[1])
        #     # Strip all spaces to save space
        #     totalCut = megaCut.replace(" ", "") + threshrunCut[:-2] + ")"

        # Create new key for dictionaries according to subNum
        hDict[subNum] = []

        for idx, ch in enumerate(chList):
            # Append empty list for every subNum to store channel-based
            hDict[subNum].append([])

            # Set high gain only!
            channelCut = "channel==%d&&gain==0" % (ch)
            # Create new array for each subDS
            riseNoiseCut, fitSloCut = "", ""
            if rnD[ch][2] == 0 or fsD[ch][2] == 0:
                continue
            else:
                riseNoiseCut = '&&riseNoise<%.2f' % (rnD[ch][2])
                fitSloCut = '&&fitSlo<%.2f' % (fsD[ch][2])

            # Set cuts here
            PSA1 = channelCut + runCut + riseNoiseCut
            PSA2 = channelCut + runCut + riseNoiseCut + fitSloCut

            # Save all cuts into a list to iterate through
            cutList = [channelCut + runCut, PSA1, PSA2]

            for idx2, cuts in enumerate(cutList):
                if specMode:
                    hDict[subNum][idx].append(ROOT.TH1D())
                    hDict[subNum][idx][idx2] = wl.H1D(skimTree,
                                                      bins,
                                                      lower,
                                                      upper,
                                                      "trapENFCal",
                                                      cuts,
                                                      Title="h0_%d_Ch%d_%d" %
                                                      (subNum, ch, idx2))
                    print("Drawn: h0_%d_Ch%d_%d" % (subNum, ch, idx2))

    # Merge histograms into a list of histograms per cut
    if specMode:
        outFile.cd()
        ROOT.gStyle.SetOptStat(0)
        c1 = ROOT.TCanvas("c1", "c1", 1100, 800)
        c1.SetLogy()
        leg1 = ROOT.TLegend(0.35, 0.8, 0.65, 0.89)
        leg1.SetBorderSize(0)
        for idx2, cuts in enumerate(cutList):
            hList.append(ROOT.TH1D())
            hList[idx2] = hDict[0][0][idx2]
            for subNum in cInfo.master["ds%d_m%d" % (dsNum, modNum)].keys():
                for idx, ch in enumerate(chList[1:]):
                    hDict[subNum][idx][idx2].Write()
                    hList[idx2].Add(hDict[subNum][idx][idx2])

            hList[idx2].SetTitle("")
            hList[idx2].GetXaxis().SetTitle("Energy (keV)")
            hList[idx2].GetYaxis().SetTitle("Counts/ %.1f keV" % (float(
                (upper - lower) / bins)))
            # hList[idx2].SetMinimum(0.1) # Arbitrary unit right now...
            hList[idx2].SetLineColor(idx2 + 1)
            hList[idx2].Draw("SAME")
            leg1.AddEntry(hList[idx2], "%s" % cutNames[idx2], "l")
        leg1.Draw()
        c1.SaveAs("%s/Spec_ds%d_m%d.pdf" % (outDir, dsNum, modNum))
        c1.SaveAs("%s/Spec_ds%d_m%d.C" % (outDir, dsNum, modNum))

        outFile.Close()
Ejemplo n.º 5
0
def burstCut(dsNum):
    """ ./tuneCuts.py [dsNum] -burst """

    # rates = {0:(30,5), 1:(20,5), 3:(50,5), 4:(20,3), 5:(150.,5.)} # v1 - before fitSLo
    rates = {
        0: (20, 5),
        1: (20, 5),
        3: (20, 5),
        4: (20, 5),
        5: (40., 5)
    }  # v2 - after fitSlo

    chList = ds.GetGoodChanList(dsNum)
    nDets = len(chList)
    maxRate = rates[dsNum][0]
    maxChanRate = rates[dsNum][0] * rates[dsNum][1] / float(nDets)

    print "maxRate %d  nDets %d  factor %d  maxChanRate %.2f" % (
        rates[dsNum][0], nDets, rates[dsNum][1], maxChanRate)
    energyCut = "trapENFCal >= 1"

    ignoreList = {0: [656], 3: [592, 692], 4: [1332], 5: [692, 1232, 1124]}
    bkg = ROOT.TChain("skimTree")
    for ch in chList:
        if ch not in ignoreList[dsNum]:
            f = "~/project/latskim/latSkimDS%d_ch%d.root" % (dsNum, ch)
            print "Added", f
            bkg.Add(f)

    # append to the text file (input to ds_livetime.cc)
    ds_livetimeList = open("burstCut_v1.txt", 'a')
    for key in ignoreList:
        killChs = ""
        for val in ignoreList[key]:
            killChs += " %d " % val
        ds_livetimeList.write("%s %s \n" % (key, killChs))

    c0 = ROOT.TCanvas("c0", "c0", 1000, 600)

    rlo, rhi = ds.dsRanges[dsNum][0], ds.dsRanges[dsNum][1]

    clo, chi = 570, 700
    if dsNum == 4: clo, chi = 1100, 1400
    if dsNum == 5: clo, chi = 570, 1400

    h0 = wl.H2D(bkg, rhi - rlo, rlo, rhi, chi - clo, clo, chi, "channel:run",
                energyCut, "Run Number", "Channel")
    h0.Draw("colz")
    c0.SetLogz(1)

    c0.Print("./plots/burst/channelRateDS%d.pdf" % dsNum)

    c1 = ROOT.TCanvas("c", "c", 1600, 600)
    c1.Divide(2, 1, 0)

    c1.cd(1)
    ROOT.gPad.SetLogy(1)

    h1 = wl.H1D(bkg, rhi - rlo, rlo, rhi, "run", energyCut, "Run Number",
                "Counts")
    h1.SetLineColor(ROOT.kRed)
    h1.Draw()

    # Run & channel-based burst cut.

    runs, rates = wl.npTH1D(h1, "i")
    idx = np.where(rates > maxRate)
    print "Noisy runs:", runs[idx]

    burstCut, invBurstCut = energyCut + " && ", energyCut + " && ("

    print "maxChanRate:", maxChanRate
    for i, run in enumerate(runs[idx]):

        runCut = " && run==%d" % run
        # h2.append(ROOT.TH1D())

        h2 = wl.H1D(bkg, chi - clo, clo, chi, "channel", energyCut + runCut,
                    "channel", "Counts")

        if h2.GetEntries() == 0:
            continue

        chans, chRates = wl.npTH1D(h2, "i")
        idx2 = np.where(chRates > maxChanRate)
        print "run", int(run), "noisy chans", chans[idx2], "rates", chRates[
            idx2], "total entries", h2.GetEntries(
            ), "runCut:", energyCut + runCut

        # Write run + channel groups to the file (input to ds_livetime.cc)
        noisyChans = ""
        for ch in chans[idx2]:
            noisyChans += "%d " % ch
        ds_livetimeList.write("%d %s \n" % (run, noisyChans))

        # Make the TCut
        runBurst = "&& !(run==%d && (" % run
        invBurst = "|| (run==%d && (" % run
        if i == 0:
            runBurst = runBurst[3:]
            invBurst = invBurst[3:]

        for ch in chans[idx2]:
            runBurst += "channel==%d|| " % ch
            invBurst += "channel==%d|| " % ch
        runBurst = runBurst[:-3] + ")) "
        invBurst = invBurst[:-3] + ")) "
        burstCut += runBurst
        invBurstCut += invBurst

    invBurstCut += ")"

    ds_livetimeList.close()

    if len(runs[idx]) == 0:
        burstCut, invBurstCut = energyCut, energyCut

    # add the dead channels back in
    for ch in ignoreList[dsNum]:
        burstCut += " && channel!=%d" % ch

    print "\nBURST CUT:"
    print burstCut

    print "\nINVERSE BURST CUT:"
    print invBurstCut
    print ""

    h1a = wl.H1D(bkg, rhi - rlo, rlo, rhi, "run", burstCut)
    h1a.SetLineColor(ROOT.kBlue)
    h1a.Draw("same")

    c1.cd(2)
    ROOT.gPad.SetLogy(1)

    h1.Draw("hist")

    h1b = wl.H1D(bkg, rhi - rlo, rlo, rhi, "run", invBurstCut)
    h1b.SetLineColor(ROOT.kBlue)
    h1b.Draw("hist same")

    c1.Print("./plots/burst/burstCutDS%d.pdf" % dsNum)

    c2 = TCanvas("c2", "c2", 1000, 600)
    c2.SetLogy(1)

    eb, elo, ehi = 150, 0, 30  # 5 bins/kev

    h2 = wl.H1D(bkg, eb, elo, ehi, "trapENFCal", "", "Energy", "Counts")
    h2.SetLineColor(ROOT.kRed)

    h3 = wl.H1D(bkg, eb, elo, ehi, "trapENFCal", burstCut)
    h3.SetLineColor(ROOT.kBlue)

    h2.Draw("hist")
    h3.Draw("hist same")

    c2.Print("./plots/burst/energySpecDS%d.pdf" % dsNum)
Ejemplo n.º 6
0
def SaveHistogramsIDX(dType='Bkg', binsize=0.1, lower=0, upper=250):
    """
        Saves background or calibration data before and after cuts into histograms
    """

    outDir = '/projecta/projectdirs/majorana/users/bxyzhu/LATv2/plots/spectra'
    calDir = '/projecta/projectdirs/majorana/users/wisecg/cal-lat'
    bkgDir = '/projecta/projectdirs/majorana/users/wisecg/bg-lat'
    bkgcutDir = '/projecta/projectdirs/majorana/users/wisecg/cuts'
    calcutDir = '/projecta/projectdirs/majorana/users/bxyzhu/cuts'
    cInfo = ds.CalInfo()
    bins = int((upper - lower) / binsize)
    # Basic cut
    mNum = 1
    cuts = "gain==0 && mHL=={} && isGood && !muVeto && !(C==1&&isLNFill1) && !(C==2&&isLNFill2) && C!=0&&P!=0&&D!=0" % (
        mNum)
    skimTreeCal = ROOT.TChain("skimTree")
    skimTreeBkg = ROOT.TChain("skimTree")
    skimCutCal = ROOT.TChain("skimTree")
    skimCutBkg = ROOT.TChain("skimTree")
    dsList = [0, 1, 2, 3, 4, 5]
    outFile = ROOT.TFile(outDir + "/AThresh_mHL{}.root" % (mNum), "RECREATE")
    outFile.cd()

    for iDS, dsNum in enumerate(dsList):
        nMods = [1]
        if dsNum == 4: nMods = [2]
        if dsNum == 5: nMods = [1, 2]
        for modNum in nMods:
            chList = ds.GetGoodChanList(dsNum)
            if dsNum == 5 and modNum == 1:  # remove 692 and 1232 (both beges, so who cares)
                chList = [
                    584, 592, 598, 608, 610, 614, 624, 626, 628, 632, 640, 648,
                    658, 660, 662, 672, 678, 680, 688, 690, 694
                ]
            elif dsNum == 5 and modNum == 2:
                chList = [
                    1106, 1110, 1120, 1124, 1128, 1170, 1172, 1174, 1176, 1204,
                    1208, 1298, 1302, 1330, 1332
                ]
            # Total channel histograms, split by dataset
            nRangesCal = [
                0, len(cInfo.master['ds{}_m{}'.format(dsNum, modNum)])
            ]
            nRangesBkg = [0, ds.dsMap[dsNum]]

            if dType == 'Cal':
                for calidx in range(nRangesCal[0], nRangesCal[1]):
                    print("Drawing DS{} calidx{} mod{}".format(
                        dsNum, calidx, modNum))
                    hCutList, hFullList = [], []
                    skimTreeCal.Reset()
                    calList = cInfo.GetCalList("ds{}_m{}".format(
                        dsNum, modNum),
                                               calidx,
                                               runLimit=10)
                    for run in calList:
                        skimTreeCal.Add("{}/latSkimDS{}_run{}_*.root".format(
                            calDir, dsNum, run))

                    for idx, ch in enumerate(chList):
                        # Reset Tree every calidx + ch
                        skimCutCal.Reset()
                        if not os.path.exists(
                                "{}/calfs_rn/calfs_rn-DS{}-{}-ch{}.root".
                                format(calcutDir, dsNum, calidx, ch)):
                            hCutList.append(ROOT.TH1D())
                            hFullList.append(ROOT.TH1D())
                            print(
                                "Channel {}, calidx {} doesn't exist, skipping"
                                .format(ch, calidx))
                            continue
                        skimCutCal.Add(
                            "{}/calfs_rn/calfs_rn-DS{}-{}-ch{}.root".format(
                                calcutDir, dsNum, calidx, ch))
                        hCutList.append(ROOT.TH1D())
                        hFullList.append(ROOT.TH1D())

                        # Add additional cut here for channel
                        hCutList[idx] = wl.H1D(
                            skimCutCal,
                            bins,
                            lower,
                            upper,
                            "trapENFCal",
                            cuts + "&& channel=={}".format(ch),
                            Title="hCalDS{}_Ch{}_CalIdx{}".format(
                                dsNum, ch, calidx),
                            Name="hDS{}_Ch{}_CalIdx{}".format(
                                dsNum, ch, calidx))
                        hFullList[idx] = wl.H1D(
                            skimTreeCal,
                            bins,
                            lower,
                            upper,
                            "trapENFCal",
                            cuts + "&&channel=={}".format(ch),
                            Title="hFullDS_{}_Ch{}_CalIdx{}".format(
                                dsNum, ch, calidx),
                            Name="hCalFullDS{}_Ch{}_CalIdx{}".format(
                                dsNum, ch, calidx))

                        # Write all histograms (even if they're empty -- for debugging purposes)
                        hCutList[idx].Write()
                        hFullList[idx].Write()
            if dType == 'Bkg':
                for bkgidx in range(nRangesBkg[0], nRangesBkg[1] + 1):
                    print("Drawing DS{} bkgidx{} mod{}".format(
                        dsNum, bkgidx, modNum))
                    hCutList, hFullList = [], []
                    skimTreeBkg.Reset()
                    skimTreeBkg.Add("{}/latSkimDS{}_{}_*.root".format(
                        bkgDir, dsNum, bkgidx))

                    for idx, ch in enumerate(chList):
                        # Reset Tree every bkgidx + ch
                        skimCutBkg.Reset()
                        if not os.path.exists(
                                "{}/fs_rn/fs_rn-DS{}-{}-ch{}.root".format(
                                    bkgcutDir, dsNum, bkgidx, ch)):
                            hCutList.append(ROOT.TH1D())
                            hFullList.append(ROOT.TH1D())
                            print(
                                "Channel {}, bkgidx {} has no entries, skipping"
                                .format(ch, bkgidx))
                            continue
                        skimCutBkg.Add(
                            "{}/fs_rn/fs_rn-DS{}-{}-ch{}.root".format(
                                bkgcutDir, dsNum, bkgidx, ch))

                        hCutList.append(ROOT.TH1D())
                        hFullList.append(ROOT.TH1D())

                        # Add additional cut here for channel
                        hCutList[idx] = wl.H1D(
                            skimCutBkg,
                            bins,
                            lower,
                            upper,
                            "trapENFCal",
                            cuts + "&& channel=={}".format(ch),
                            Title="hBkgDS{}_Ch{}_BkgIdx{}".format(
                                dsNum, ch, bkgidx),
                            Name="hDS{}_Ch{}_BkgIdx{}".format(
                                dsNum, ch, bkgidx))
                        hFullList[idx] = wl.H1D(
                            skimTreeBkg,
                            bins,
                            lower,
                            upper,
                            "trapENFCal",
                            cuts + "&&channel=={}".format(ch),
                            Title="hFullDS_{}_Ch{}_BkgIdx{}".format(
                                dsNum, ch, bkgidx),
                            Name="hBkgFullDS{}_Ch{}_BkgIdx{}".format(
                                dsNum, ch, bkgidx))

                        # Write all histograms -- for debugging
                        hCutList[idx].Write()
                        hFullList[idx].Write()

    # Write total histogram and close
    outFile.Close()
    return 0
Ejemplo n.º 7
0
def GenerateCorrectedSpectra(dsNum=1,
                             dType='isNat',
                             binsize=0.1,
                             binsize2=0.001,
                             lower=0,
                             upper=250):
    """
        Calculates analysis threshold and applies analysis threshold to exposure calculation
        Saves histograms into ROOT file
    """

    ROOT.gStyle.SetOptStat(0)
    bgDir, outDir = '/Users/brianzhu/project/cuts/fs_rn', '/Users/brianzhu/macros/code/LAT/plots/AThresh'
    bins = int((upper - lower) / binsize)
    bins2 = int((upper - lower) / binsize2)
    cuts = "{} && gain==0 && mHL==1 && isGood && !muVeto && !(C==1&&isLNFill1) && !(C==2&&isLNFill2) && C!=0&&P!=0&&D!=0".format(
        dType)

    chList = ds.GetGoodChanList(dsNum, dType[2:])
    if dsNum == 5:  # remove 692 and 1232 (both beges, so who cares)
        if 692 in chList: chList.remove(692)
        if 1232 in chList: chList.remove(1232)

    nRanges = [0, ds.dsMap[dsNum]]
    if dsNum == 5: nRanges[0] = 80  # exclude DS-5A

    athresh = GetAnaylsisThreshold(dsNum, True)
    threshDict = {}
    threshDictSave = {}
    specIDXDict = {}
    specDict = {}
    outFile = ROOT.TFile(
        outDir + '/Bkg_{}_DS{}_Test.root'.format(dType, dsNum), "RECREATE")
    cutTree = ROOT.TChain("skimTree")
    TotalSpec = ROOT.TH1D('DS{}_{}_Corr'.format(dsNum, dType), '', bins, lower,
                          upper)
    UncorrTotalSpec = ROOT.TH1D('DS{}_{}_UnCorr'.format(dsNum, dType), '',
                                bins, lower, upper)
    for bkgidx in range(nRanges[0], nRanges[1] + 1):
        # Get Threshold dictionary
        tD = ds.getDBRecord("thresh_ds{}_bkgidx{}".format(dsNum, bkgidx))

        # Get Analysis Threshold Dictionary and Exposure Dictionary here
        for idx, ch in enumerate(chList):
            if ch in tD:
                # Reset Tree
                cutTree.Reset()

                # Check dictionaries to see if variables exist
                if ch not in athresh[bkgidx]:
                    print(
                        "Warning: Analysis threshold doesn't exist for ch{} bkgidx{}"
                        .format(ch, bkgidx))
                    continue

                if ch not in ex.Exposure[dsNum][bkgidx]:
                    print("Warning: Exposure doesn't exist for ch{} bkgidx{}".
                          format(ch, bkgidx))
                    continue

                if not os.path.exists(
                        bgDir +
                        "/fs_rn-DS{}-{}-ch{}.root".format(dsNum, bkgidx, ch)):
                    print(
                        "Warning: Background data doesn't exist for ch{} bkgidx{}"
                        .format(ch, bkgidx))
                    continue

                # Load Background Data with cuts applied
                cutTree.Add(
                    bgDir +
                    "/fs_rn-DS{}-{}-ch{}.root".format(dsNum, bkgidx, ch))

                # Create Trigger Efficiency function
                mu, sigma = tD[ch][0], tD[ch][1]
                threshFnc = ROOT.TF1(
                    "fEff_{}_{}_{}".format(dsNum, ch, bkgidx),
                    "0.5*(1+TMath::Erf((x-[0])/(TMath::Sqrt(2)*[1])))", 0, 250)
                threshFnc.SetParameters(mu, abs(sigma))

                # Create Analysis Threshold + Exposure function
                dExp, dAThresh = ex.Exposure[dsNum][bkgidx][ch], athresh[
                    bkgidx][ch]
                expFnc = ROOT.TF1("fExp_{}_{}_{}".format(dsNum, ch, bkgidx),
                                  "[0]*(x>[1])", 0, 250)
                expFnc.SetParameters(dExp, dAThresh)

                # Print out info
                print(
                    "DS{} Ch{} BkgIdx{}  Exposure {}  Thresh {}  Analysis Threshold {} "
                    .format(dsNum, ch, bkgidx, dExp, mu, dAThresh))

                specIDXDict.setdefault(bkgidx, {}).setdefault(ch, ROOT.TH1D())
                specIDXDict[bkgidx][ch] = wl.H1D(
                    cutTree,
                    bins,
                    lower,
                    upper,
                    "trapENFCal",
                    cuts +
                    "&& trapENFCal>{:.2f} && channel=={}".format(dAThresh, ch),
                    Title="hBkg_Ch{}_Bkgidx{}".format(ch, bkgidx),
                    Name="hBkg_Ch{}_Bkgidx{}".format(ch, bkgidx))

                # Exposure function for scaling
                h3 = ROOT.TH1D("hCh{}_Bkgidx{}_Scale".format(ch, bkgidx), "",
                               bins, lower, upper)
                for i in range(h3.GetNbinsX() + 1):
                    if i < dAThresh * 10:
                        continue  # Round up to set analysis threshold
                    h3.SetBinContent(i, dExp)
                # Scale here -- trying to make it legible instead of messy
                h3.Multiply(threshFnc)
                threshDict.setdefault(ch,
                                      h3.Clone("Efficiency_ch{}".format(ch)))
                threshDict[ch].Add(h3)

                # Save exposure function to histogram
                h4 = ROOT.TH1D("hCh{}_Bkgidx{}".format(ch, bkgidx), "", bins2,
                               lower, upper)
                for i in range(h4.GetNbinsX() + 1):
                    if i < dAThresh * 1000:
                        continue  # Round up to set analysis threshold
                    h4.SetBinContent(i, dExp)
                # Scale here
                h4.Multiply(threshFnc)
                threshDictSave.setdefault(
                    ch, h4.Clone("hEff_DS{}_ch{}".format(dsNum, ch)))
                threshDictSave[ch].Add(h4)

                if specIDXDict[bkgidx][ch].Integral() == 0:
                    print("Ch {} has 0 counts, not saving".format(ch))
                    continue

                specDict.setdefault(
                    ch, specIDXDict[bkgidx][ch].Clone('hBkg_Ch{}'.format(ch)))
                specDict[ch].Add(specIDXDict[bkgidx][ch])
                specIDXDict[bkgidx][ch].Write()

    EffTot = ROOT.TH1D("DS{}_EffTot_Divide".format(dsNum),
                       "DS{} {}".format(dsNum, dType), bins, lower, upper)
    EffTotSave = ROOT.TH1D("DS{}_{}_EffTot".format(dsNum, dType),
                           "DS{} {}".format(dsNum, dType), bins2, lower, upper)

    for ch in specDict:
        if ch not in threshDict:
            print("Ch {} not in threshDict... you should've fixed this!".
                  format(ch))
            continue
        TotalSpec.Add(specDict[ch])
        UncorrTotalSpec.Add(specDict[ch])
        EffTot.Add(threshDict[ch])
        EffTotSave.Add(threshDictSave[ch])

        # Save Channel specific
        h1 = specDict[ch].Clone('hDS{}_ChTot_Ch{}'.format(dsNum, ch))
        h1.SetTitle('hDS{}_ChTot_Ch{}'.format(dsNum, ch))
        threshDictSave[ch].Write()
        h1.Write()

    print('Channels in DS{} -- {}'.format(dsNum, dType), specDict.keys())

    # Save all histograms with fancy names and axes
    EffTotSave.GetYaxis().SetTitle('Exposure (kg-day)')
    EffTotSave.GetXaxis().SetTitle('Energy (keV)')
    EffTotSave.Write()
    UncorrTotalSpec.GetXaxis().SetTitle('Energy (keV)')
    UncorrTotalSpec.GetYaxis().SetTitle('Counts')
    UncorrTotalSpec.Write()
    TotalSpec.Divide(EffTot)
    TotalSpec.GetXaxis().SetTitle('Energy (keV)')
    TotalSpec.GetYaxis().SetTitle('Counts/(0.1 keV)/kg/day')
    TotalSpec.Write()
    outFile.Close()
Ejemplo n.º 8
0
def SaveCalHistograms():

    outDir = '/projecta/projectdirs/majorana/users/bxyzhu/LATv2/plots/spectra'
    calDir = '/projecta/projectdirs/majorana/users/wisecg/cal-lat'
    cutDir = '/projecta/projectdirs/majorana/users/bxyzhu/cuts'
    cInfo = ds.CalInfo()
    bins,lower,upper = 250,0,250
    # Basic cut
    mNum = 2
    cuts = "gain==0 && mHL==%d && isGood && !muVeto && !(C==1&&isLNFill1) && !(C==2&&isLNFill2) && C!=0&&P!=0&&D!=0"%(mNum)
    skimTree = ROOT.TChain("skimTree")
    skimCut = ROOT.TChain("skimTree")
    dsList = [0, 1, 2, 3, 4, 5]
    # dsList = [1]
    outFile = ROOT.TFile(outDir + "/CalAcceptance_wfstd_mHL%d.root"%(mNum), "RECREATE")
    outFile.cd()
    # Total histogram (all datasets)

    hCutTotal = ROOT.TH1D("hCutTotal", "", bins,lower,upper)
    hFullTotal = ROOT.TH1D("hFullTotal", "", bins,lower,upper)
    # Total histogram for Dataset
    hDSTotal = []
    hDSFullTotal = []
    dMissingCh = [0, 1, 2, 3, 4, 5]
    dThreshCutCh = [0, 1, 2, 3, 4, 5]
    for iDS, dsNum in enumerate(dsList):
        hDSTotal.append(ROOT.TH1D())
        hDSTotal[iDS] = ROOT.TH1D("hDS%d"%(dsNum), "", bins,lower,upper)
        hDSFullTotal.append(ROOT.TH1D())
        hDSFullTotal[iDS] = ROOT.TH1D("hDS%d_Full"%(dsNum), "", bins,lower,upper)
        nMods = [1]
        if dsNum == 4: nMods = [2]
        if dsNum == 5: nMods = [1, 2]
        for modNum in nMods:
            chList = ds.GetGoodChanList(dsNum)
            if dsNum==5 and modNum==1: # remove 692 and 1232 (both beges, so who cares)
                chList = [584, 592, 598, 608, 610, 614, 624, 626, 628, 632, 640, 648, 658, 660, 662, 672, 678, 680, 688, 690, 694]
            elif dsNum==5 and modNum==2:
                chList = [1106, 1110, 1120, 1124, 1128, 1170, 1172, 1174, 1176, 1204, 1208, 1298, 1302, 1330, 1332]
            # Total channel histograms, split by dataset
            hChTotalList = []
            hChFullTotalList = []
            for idx, ch in enumerate(chList):
                hChTotalList.append(ROOT.TH1D())
                hChTotalList[idx] = ROOT.TH1D("hDS%d_Ch%d"%(dsNum, ch), "", bins,lower,upper)
                hChFullTotalList.append(ROOT.TH1D())
                hChFullTotalList[idx] = ROOT.TH1D("hDS%d_Ch%d_Full"%(dsNum, ch), "", bins,lower,upper)

            nRanges = [0, len(cInfo.master['ds%d_m%d'%(dsNum, modNum)])]
            for calidx in range(nRanges[0], nRanges[1]):
                print "Drawing DS%d calidx%d mod%d"%(dsNum, calidx, modNum)
                hCutList, hFullList = [], []
                skimTree.Reset()
                calList = cInfo.GetCalList("ds%d_m%d" % (dsNum, modNum), calidx, runLimit=10)
                for run in calList:
                    skimTree.Add("%s/latSkimDS%d_run%d_*.root"%(calDir, dsNum, run))

                for idx, ch in enumerate(chList):
                    # Reset Tree every calidx + ch
                    skimCut.Reset()
                    skimCut.Add("%s/calwf/calwfstd-DS%d-%d-ch%d.root"%(cutDir, dsNum, calidx, ch))
                    if skimCut.GetEntries() == 0:
                        hCutList.append(ROOT.TH1D())
                        hFullList.append(ROOT.TH1D())
                        print "Channel %d, idx %d has no entries, skipping"
                        continue

                    hCutList.append(ROOT.TH1D())
                    hFullList.append(ROOT.TH1D())
                    # Add additional cut here for channel
                    hCutList[idx] = wl.H1D(skimCut,bins,lower,upper, "trapENFCal", cuts+"&& channel==%d"%(ch), Title="hDS%d_Ch%d_%d"%(dsNum,ch,calidx), Name="hDS%d_Ch%d_%d"%(dsNum, ch,calidx))
                    hFullList[idx] = wl.H1D(skimTree,bins,lower,upper, "trapENFCal", cuts+"&&channel==%d"%(ch),Title="hFullDS_%d_Ch%d_%d"%(dsNum,ch,calidx), Name="hFullDS%d_Ch%d_%d"%(dsNum,ch,calidx))

                    # Only write channel specific if there are counts
                    if hCutList[idx].Integral() > 0:
                        # Add ch+calidx histograms to ch total histogram if
                        hCutList[idx].Write()
                        hFullList[idx].Write()
                        hChTotalList[idx].Add(hCutList[idx])
                        hChFullTotalList[idx].Add(hFullList[idx])

                        # Add individual ch+calidx histograms to total histogram and total DS histogram
                        hCutTotal.Add(hCutList[idx])
                        hFullTotal.Add(hFullList[idx])
                        hDSTotal[iDS].Add(hCutList[idx])
                        hDSFullTotal[iDS].Add(hFullList[idx])

        # Write Total channel histograms
        for idx, ch in enumerate(chList):
            if hChTotalList[idx].Integral() > 0:
                hChTotalList[idx].Write()
                hChFullTotalList[idx].Write()
            else:
                print "Channel %d has no entries!"%(ch)

        # Write total DS histograms
        hDSTotal[iDS].Write()
        hDSFullTotal[iDS].Write()

    # Write total histogram and close
    hFullTotal.Write()
    hCutTotal.Write()
    outFile.Close()
    return 0
Ejemplo n.º 9
0
def getEff():
    """ ./job-panda.py -getEff

    METHOD:
    open up the latskim file for each channel.
    loop over the good run ranges.
    for each good range, make an energy histogram.
    then calculate the efficiency curve based on the sigma value
    and convolve it with the histogram points.
    """
    import numpy as np
    import waveLibs as wl
    import scipy.special as spec
    import matplotlib.pyplot as plt
    from ROOT import TFile, TTree, TH1D, TF1, TCanvas, gROOT
    import ROOT, random

    gROOT.ProcessLine(".x ~/env/MJDClintPlotStyle.C")
    # gROOT.ProcessLine("gErrorIgnoreLevel = 3001;") # suppress ROOT messages

    bins, xlo, xhi = 50, 0, 15  # set it just high enough that the first bin center isn't negative

    hSumCorr = TH1D("hSumCorr", "hSumCorr", bins, xlo, xhi)
    hSumUncr = TH1D("hSumUncr", "hSumUncr", bins, xlo, xhi)

    dsNum = 1
    # ch = 578
    for ch in ds.GetGoodChanList(dsNum):

        inFile = TFile(homePath + "/project/latskim/latSkimDS%d_ch%d.root" %
                       (dsNum, ch))
        tree = inFile.Get("skimTree")
        fileCut = inFile.Get("theCut").GetTitle()

        _, _, goodRunErfs = ds.GetThreshDicts(dsNum)

        hUnc = wl.H1D(tree, bins, xlo, xhi, "trapENFCal", fileCut)
        hSumUncr.Add(hUnc)

        for erfs in goodRunErfs[ch]:

            runCut = " && run >= %d && run <= %d" % (erfs[0], erfs[1])
            theCut = fileCut + runCut

            h1 = wl.H1D(tree, bins, xlo, xhi, "trapENFCal", theCut)
            h1x, h1y = wl.npTH1D(h1)

            # calculate efficiency curve
            thisErf = TF1("thisErf",
                          "0.5*(1+TMath::Erf((x-[0])/(TMath::Sqrt(2)*[1]) ))")
            thisErf.SetParameter(0, erfs[2])  # mu
            thisErf.SetParameter(1, erfs[3])  # sigma
            h1.Divide(thisErf)

            # thisErf = 0.5 * (1 + spec.erf( (h1x - mu) / (np.sqrt(2) * sig) ))
            # h1yScaled = h1y / thisErf
            # nameStr = str(random.uniform(1.,2.))
            # h2 = TH1D(nameStr,nameStr,bins,xlo,xhi)
            # for i in range(bins):
            #     h2.SetBinContent(i,h1yScaled[i])

            hSumCorr.Add(h1)

    # eff-corrected spectrum.
    c = TCanvas("c", "c", 800, 600)
    c.SetLogy(1)

    hSumCorr.SetLineColor(ROOT.kBlue)
    hSumCorr.Draw("hist")

    hSumUncr.SetLineColor(ROOT.kRed)
    hSumUncr.Draw("hist same")

    # l1 = TLegend

    c.Print("./plots/effWeight/eff_DS%d.pdf" % dsNum)
Ejemplo n.º 10
0
def fitSlo238(tree,theCut):

    # for calibration data, keep 99% of the fast events in the 238 peak.
    # this is practice for doing this with the 10 kev peak in natural bg data.

    # scatter plot
    h1 = wl.H2D(tree,"h1",500,0,250,500,0,200,"fitSlo:trapENFCal",theCut)
    cts1 = h1.Integral( *wl.Get2DBins(h1,0,250,0,200) )

    # -- 238 peak --

    h2 = wl.H1D(tree,"h2",50,237,240,"trapENFCal",theCut)
    cts2 = h2.Integral( *wl.Get1DBins(h2,237,240) )
    h2.SetLineColor(4)

    f0 = TF1("f0","gaus",237,240)
    h2.Fit("f0","Lq") # use to set initial guesses

    f1 = TF1("f1", "[0] * x  + [1] * exp(-1.0 * (TMath::Power((x-[2]),2) / (2 * TMath::Power([3],2)) ))", 237, 240)
    wl.SetPars(f1,[1,418,238,0.381])
    f1.SetLineColor(4)
    h2.Fit("f1","q")
    [flat, norm1, mu, sig] = wl.GetPars(f1)

    h3 = wl.H1D(tree,"h3",50,237,240,"trapENFCal",theCut+" && fitSlo < 20")
    cts3 = h3.Integral( *wl.Get1DBins(h3,237,240) )

    f2 = TF1("f2", "[0] * x  + [1] * exp(-1.0 * (TMath::Power((x-[2]),2) / (2 * TMath::Power([3],2)) ))", 237, 240)
    wl.SetPars(f2,[1,418,238,0.381])
    f2.SetLineColor(2)
    h3.Fit("f2","q")
    [flat, norm2, mu, sig] = wl.GetPars(f2)

    retention = 100*norm2/norm1
    print "norm1 %.2f  norm2 %.2f  retention: %.2f" % (norm1, norm2, retention)


    # -- Plots --
    c1 = TCanvas("c1","Bob Ross's Canvas",1200,600)

    c1.Divide(2,1) # x, y
    c1.cd(1)
    gPad.SetLogz()
    h1.Draw("COLZ")

    c1.cd(2)
    h2.Draw()
    h3.SetLineColor(2) # red
    h3.Draw("same")

    l1 = TLegend(0.6,0.7,0.87,0.92)
    l1.AddEntry(h2,"basic","l")
    l1.AddEntry(f1,"basic fit:","l")
    # l1.AddEntry(f1,"flat %.2f  norm %.2f" % (flat,norm1) ,"")
    # l1.AddEntry(f1,"mu %.2f  sig %.2f" % (mu,sig) ,"")
    l1.AddEntry(h3,"+fitSlo < 20","l")
    l1.AddEntry(h3,"Retention: %.3f" % retention,"")

    l1.Draw("same")
    c1.Update()

    c1.Print("./plots/cal-fitSlo.pdf")
Ejemplo n.º 11
0
def fitArb10(tree,theCut):
    # fit an arbitrary low-energy cut

    print theCut

    theCut += " && !isEnr"
    checkCut = ""
    thisVar = "bandTime"
    fileName = "./plots/lat-max.pdf"
    parLim = [0,20000]

    # scatter plot
    h0 = wl.H2D(tree,"h0",100,0,20,500,parLim[0],parLim[1],thisVar+":trapENFCal",theCut)

    # -- 10 peak --
    fitModel10 = "[0] + [1]*x + [2]*x**2 + [3] * exp(-1.0 * ((x-[4])**2 / (2 * [5]**2)) )"

    h1 = wl.H1D(tree,"h1",20,9.5,11.5,"trapENFCal",theCut)
    h2 = wl.H1D(tree,"h2",20,9.5,11.5,"trapENFCal",theCut+checkCut)

    f0 = TF1("f0","gaus",10,11)
    h1.Fit("f0","Lq")
    [norm,mu,sig] = wl.GetPars(f0)

    f1 = TF1("f1", fitModel10, 9.5,11)
    wl.SetPars(f1,[-209, 41, -2, norm, mu, sig])
    f1.SetLineColor(4)
    h1.Fit("f1","Lq")
    [p0,p1,p2,norm1,mu,sig] = wl.GetPars(f1)

    f2 = TF1("f2", fitModel10, 9.5,11)
    wl.SetPars(f2,[-209, 41, -2, norm1, mu, sig])
    f2.SetLineColor(2)
    h2.Fit("f2","Lq")
    [p0,p1,p2,norm2,mu,sig] = wl.GetPars(f2)

    retention = 100*norm2/norm1
    print "Retention:",retention," Cut used:",checkCut

    # -- Energy Spectrum --
    h3 = wl.H1D(tree,"h3",250,0,50,"trapENFCal",theCut)
    h4 = wl.H1D(tree,"h4",250,0,50,"trapENFCal",theCut+checkCut)

    cts3 = h3.Integral( *wl.Get1DBins(h3,0,20))
    cts4 = h4.Integral( *wl.Get1DBins(h4,0,20))
    cts5 = h3.Integral( *wl.Get1DBins(h3,20,40))
    cts6 = h4.Integral( *wl.Get1DBins(h4,20,40))

    print "Cts. 0-20 %d before  %d after.  20-40 %d before %d after" % (cts3,cts4,cts5,cts6)

    h3.GetXaxis().SetRangeUser(0,20)
    h4.GetXaxis().SetRangeUser(0,20)


    # -- Plots --
    c1 = TCanvas("c1","Bob Ross's Canvas",1800,600)

    c1.Divide(3,1,0.00001) # TPad::Divide
    c1.cd(1)
    gPad.SetLogz()
    h0.SetMinimum(1)
    h0.Draw("COLZ")

    c1.cd(2)
    gPad.SetLogy()
    h3.SetLineColor(4)
    h3.Draw()
    h4.SetLineColor(2)
    h4.Draw("same")
    l1 = TLegend(0.4,0.7,0.87,0.92)
    l1.AddEntry(h1,"basic","l")
    l1.AddEntry(h2,thisVar,"l")
    l1.Draw("same")

    c1.cd(3)
    h1.SetLineColor(4) # blue
    h1.Draw()
    h2.SetLineColor(2) # red
    h2.Draw("same")

    l2 = TLegend(0.6,0.6,0.87,0.92)
    l2.AddEntry(h1,"basic","l")
    l2.AddEntry(h2,thisVar,"l")
    l2.AddEntry(h2,"Retention: %.3f" % retention,"")
    l2.Draw("same")

    c1.Print(fileName)
Ejemplo n.º 12
0
def fitSlo10(tree,theCut):

    theCut += " && !isEnr"

    # scatter plot
    h0 = wl.H2D(tree,"h0",100,0,20,500,0,200,"fitSlo:trapENFCal",theCut)

    # -- 10 peak --
    fitModel10 = "[0] + [1]*x + [2]*x**2 + [3] * exp(-1.0 * ((x-[4])**2 / (2 * [5]**2)) )"

    h1 = wl.H1D(tree,"h1",20,9.5,11.5,"trapENFCal",theCut)
    h1.SetLineColor(4)

    # f1 = TF1("f1","gaus",10,11)
    # h1.Fit("f1","L") # use to set initial guesses

    f1 = TF1("f1", fitModel10, 9.5,11)
    wl.SetPars(f1,[-209, 41, -2, 28, 10.3, 0.135])
    f1.SetLineColor(4)
    h1.Fit("f1","Lq")
    [p0,p1,p2,norm1,mu,sig] = wl.GetPars(f1)
    # print wl.GetPars(f1)

    h2 = wl.H1D(tree,"h2",20,9.5,11.5,"trapENFCal",theCut+" && fitSlo < 18")
    f2 = TF1("f2", fitModel10, 9.5,11)
    wl.SetPars(f2,[-209, 41, -2, 28, 10.3, 0.135])
    f2.SetLineColor(2)
    h2.Fit("f2","Lq")
    [p0,p1,p2,norm2,mu,sig] = wl.GetPars(f2)

    retention1 = 100*norm2/norm1


    # -- 6.54 (Fe55) peak --
    # TODO: This doesn't work well.  wait till you're using RooFit.

    fitModel6 = "[0] * x + [1] * exp( -1.0 * ((x - [2])**2 / (2 * [3]**2)) )"
    # fitModel6 = "[0] * exp( -1.0 * ((x - [1])**2 / (2 * [2]**2)) )"

    h3 = wl.H1D(tree,"h3",20,5.5,7.5,"trapENFCal",theCut)

    # f3 = TF1("f3","gaus",6,7)
    # h3.Fit("f3","L") # use to set initial guesses

    # f3 = TF1("f3", fitModel6, 6,7)
    # wl.SetPars(f3,[-1, 19.4, 6.47, 0.631])
    # f3.SetLineColor(4)
    # h3.Fit("f3","Lq")
    # [lin,norm3,mu,sig] = wl.GetPars(f3)
    #
    # h4 = wl.H1D(tree,"h4",20,5.5,7.5,"trapENFCal",theCut+" && fitSlo < 18")
    # f4 = TF1("f4", fitModel6, 6,7)
    # wl.SetPars(f4,[-1, 19.4, 6.47, 0.631])
    # f4.SetLineColor(2)
    # h4.Fit("f4","Lq")
    # [lin,norm4,mu,sig] = wl.GetPars(f4)

    # retention2 = 100*norm4/norm3
    # print "norm3 %.2f  norm4 %.2f  retention2: %.2f" % (norm3, norm4, retention2)


    # -- Plots --
    c1 = TCanvas("c1","Bob Ross's Canvas",1200,600)

    # c1.Divide(3,1,0.00001) # TPad::Divide
    c1.Divide(2,1,0.00001)
    c1.cd(1)
    gPad.SetLogz()
    h0.SetMinimum(1)
    h0.Draw("COLZ")

    c1.cd(2)
    h1.SetLineColor(4) # blue
    h1.Draw()
    h2.SetLineColor(2) # red
    h2.Draw("same")

    l1 = TLegend(0.6,0.6,0.87,0.92)
    l1.AddEntry(h1,"basic","l")
    l1.AddEntry(h2,"+fitSlo < 20","l")
    l1.AddEntry(h2,"Retention: %.3f" % retention1,"")
    l1.Draw("same")

    # c1.cd(3)
    # h3.Draw()
    # h4.SetLineColor(2) # red
    # h4.Draw("same")
    #
    # l2 = TLegend(0.6,0.6,0.87,0.92)
    # l2.AddEntry(h3,"basic","l")
    # l2.AddEntry(h4,"+fitSlo < 20","l")
    # l2.AddEntry(h4,"Retention: %.3f" % retention2,"")
    # l2.Draw("same")

    c1.Print("./plots/ds1-fitSlo.pdf")