Ejemplo n.º 1
0
def sine_generator(seq_size=100, mu=256):
    t = np.linspace(0, 1, 16000)
    data = np.sin(2 * np.pi * 220 * t) + np.sin(2 * np.pi * 224 * t)
    data = data / 2
    while True:
        ys = data[:seq_size]
        ys = encode_mu_law(data, mu)
        yield torch.from_numpy(ys[:seq_size])
Ejemplo n.º 2
0
def main():
    parser = argparse.ArgumentParser()
    # decode setting
    parser.add_argument("--feats",
                        required=True,
                        type=str,
                        help="list or directory of aux feat files")
    parser.add_argument("--stats",
                        required=True,
                        type=str,
                        help="hdf5 file including statistics")
    parser.add_argument("--checkpoint",
                        required=True,
                        type=str,
                        help="model file")
    parser.add_argument("--config",
                        required=True,
                        type=str,
                        help="configure file")
    parser.add_argument("--outdir",
                        required=True,
                        type=str,
                        help="directory to save generated samples")
    parser.add_argument("--fs", default=16000, type=int, help="sampling rate")
    parser.add_argument("--batch_size",
                        default=32,
                        type=int,
                        help="number of batch size in decoding")
    parser.add_argument("--n_gpus", default=1, type=int, help="number of gpus")
    # other setting
    parser.add_argument("--intervals",
                        default=1000,
                        type=int,
                        help="log interval")
    parser.add_argument("--seed", default=1, type=int, help="seed number")
    parser.add_argument("--verbose", default=1, type=int, help="log level")
    args = parser.parse_args()

    # check directory existence
    if not os.path.exists(args.outdir):
        os.makedirs(args.outdir)

    # set log level
    if args.verbose > 0:
        logging.basicConfig(
            level=logging.INFO,
            format=
            '%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s',
            datefmt='%m/%d/%Y %I:%M:%S',
            filename=args.outdir + "/decode.log")
        logging.getLogger().addHandler(logging.StreamHandler())
    elif args.verbose > 1:
        logging.basicConfig(
            level=logging.DEBUG,
            format=
            '%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s',
            datefmt='%m/%d/%Y %I:%M:%S',
            filename=args.outdir + "/decode.log")
        logging.getLogger().addHandler(logging.StreamHandler())
    else:
        logging.basicConfig(
            level=logging.WARN,
            format=
            '%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s',
            datefmt='%m/%d/%Y %I:%M:%S',
            filename=args.outdir + "/decode.log")
        logging.getLogger().addHandler(logging.StreamHandler())
        logging.warn("logging is disabled.")

    # fix seed
    os.environ['PYTHONHASHSEED'] = str(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)

    # load config
    config = torch.load(args.config)

    # get file list
    if os.path.isdir(args.feats):
        feat_list = sorted(find_files(args.feats, "*.h5"))
    elif os.path.isfile(args.feats):
        feat_list = read_txt(args.feats)
    else:
        logging.error("--feats should be directory or list.")
        sys.exit(1)

    # prepare the file list for parallel decoding
    feat_lists = np.array_split(feat_list, args.n_gpus)
    feat_lists = [f_list.tolist() for f_list in feat_lists]

    # define transform
    scaler = StandardScaler()
    scaler.mean_ = read_hdf5(args.stats, "/mean")
    scaler.scale_ = read_hdf5(args.stats, "/scale")
    wav_transform = transforms.Compose(
        [lambda x: encode_mu_law(x, config.n_quantize)])
    feat_transform = transforms.Compose([lambda x: scaler.transform(x)])

    # define gpu decode function
    def gpu_decode(feat_list, gpu):
        with torch.cuda.device(gpu):
            # define model and load parameters
            model = WaveNet(n_quantize=config.n_quantize,
                            n_aux=config.n_aux,
                            n_resch=config.n_resch,
                            n_skipch=config.n_skipch,
                            dilation_depth=config.dilation_depth,
                            dilation_repeat=config.dilation_repeat,
                            kernel_size=config.kernel_size,
                            upsampling_factor=config.upsampling_factor)
            model.load_state_dict(torch.load(args.checkpoint)["model"])
            model.eval()
            model.cuda()
            torch.backends.cudnn.benchmark = True

            # define generator
            generator = decode_generator(
                feat_list,
                batch_size=args.batch_size,
                wav_transform=wav_transform,
                feat_transform=feat_transform,
                use_speaker_code=config.use_speaker_code,
                upsampling_factor=config.upsampling_factor)

            # decode
            if args.batch_size > 1:
                for feat_ids, (batch_x, batch_h, n_samples_list) in generator:
                    logging.info("decoding start")
                    samples_list = model.batch_fast_generate(
                        batch_x, batch_h, n_samples_list, args.intervals)
                    for feat_id, samples in zip(feat_ids, samples_list):
                        wav = decode_mu_law(samples, config.n_quantize)
                        sf.write(args.outdir + "/" + feat_id + ".wav", wav,
                                 args.fs, "PCM_16")
                        logging.info("wrote %s.wav in %s." %
                                     (feat_id, args.outdir))
            else:
                for feat_id, (x, h, n_samples) in generator:
                    logging.info("decoding %s (length = %d)" %
                                 (feat_id, n_samples))
                    samples = model.fast_generate(x, h, n_samples,
                                                  args.intervals)
                    wav = decode_mu_law(samples, config.n_quantize)
                    sf.write(args.outdir + "/" + feat_id + ".wav", wav,
                             args.fs, "PCM_16")
                    logging.info("wrote %s.wav in %s." %
                                 (feat_id, args.outdir))

    # parallel decode
    processes = []
    gpu = 0
    for i, feat_list in enumerate(feat_lists):
        p = mp.Process(target=gpu_decode, args=(
            feat_list,
            gpu,
        ))
        p.start()
        processes.append(p)
        gpu += 1
        if (i + 1) % args.n_gpus == 0:
            gpu = 0

    # wait for all process
    for p in processes:
        p.join()
Ejemplo n.º 3
0
def main():
    parser = argparse.ArgumentParser()
    # path setting
    parser.add_argument("--waveforms",
                        required=True,
                        type=str,
                        help="directory or list of wav files")
    parser.add_argument("--feats",
                        required=True,
                        type=str,
                        help="directory or list of aux feat files")
    parser.add_argument("--stats",
                        required=True,
                        type=str,
                        help="hdf5 file including statistics")
    parser.add_argument("--expdir",
                        required=True,
                        type=str,
                        help="directory to save the model")
    # network structure setting
    parser.add_argument("--n_quantize",
                        default=256,
                        type=int,
                        help="number of quantization")
    parser.add_argument("--n_aux",
                        default=28,
                        type=int,
                        help="number of dimension of aux feats")
    parser.add_argument("--n_resch",
                        default=512,
                        type=int,
                        help="number of channels of residual output")
    parser.add_argument("--n_skipch",
                        default=256,
                        type=int,
                        help="number of channels of skip output")
    parser.add_argument("--dilation_depth",
                        default=10,
                        type=int,
                        help="depth of dilation")
    parser.add_argument("--dilation_repeat",
                        default=1,
                        type=int,
                        help="number of repeating of dilation")
    parser.add_argument("--kernel_size",
                        default=2,
                        type=int,
                        help="kernel size of dilated causal convolution")
    parser.add_argument("--upsampling_factor",
                        default=0,
                        type=int,
                        help="upsampling factor of aux features"
                        "(if set 0, do not apply)")
    parser.add_argument("--use_speaker_code",
                        default=False,
                        type=strtobool,
                        help="flag to use speaker code")
    # network training setting
    parser.add_argument("--lr", default=1e-4, type=float, help="learning rate")
    parser.add_argument("--weight_decay",
                        default=0.0,
                        type=float,
                        help="weight decay coefficient")
    parser.add_argument(
        "--batch_size",
        default=20000,
        type=int,
        help="batch size (if set 0, utterance batch will be used)")
    parser.add_argument("--iters",
                        default=200000,
                        type=int,
                        help="number of iterations")
    # other setting
    parser.add_argument("--checkpoints",
                        default=10000,
                        type=int,
                        help="how frequent saving model")
    parser.add_argument("--intervals",
                        default=100,
                        type=int,
                        help="log interval")
    parser.add_argument("--seed", default=1, type=int, help="seed number")
    parser.add_argument("--resume",
                        default=None,
                        type=str,
                        help="model path to restart training")
    parser.add_argument("--verbose", default=1, type=int, help="log level")
    args = parser.parse_args()

    # make experimental directory
    if not os.path.exists(args.expdir):
        os.makedirs(args.expdir)

    # set log level
    if args.verbose == 1:
        logging.basicConfig(
            level=logging.INFO,
            format=
            '%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s',
            datefmt='%m/%d/%Y %I:%M:%S',
            filename=args.expdir + "/train.log")
        logging.getLogger().addHandler(logging.StreamHandler())
    elif args.verbose > 1:
        logging.basicConfig(
            level=logging.DEBUG,
            format=
            '%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s',
            datefmt='%m/%d/%Y %I:%M:%S',
            filename=args.expdir + "/train.log")
        logging.getLogger().addHandler(logging.StreamHandler())
    else:
        logging.basicConfig(
            level=logging.WARN,
            format=
            '%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s',
            datefmt='%m/%d/%Y %I:%M:%S',
            filename=args.expdir + "/train.log")
        logging.getLogger().addHandler(logging.StreamHandler())
        logging.warn("logging is disabled.")

    # fix seed
    os.environ['PYTHONHASHSEED'] = str(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)

    # save args as conf
    torch.save(args, args.expdir + "/model.conf")

    # # define network
    model = WaveNet(n_quantize=args.n_quantize,
                    n_aux=args.n_aux,
                    n_resch=args.n_resch,
                    n_skipch=args.n_skipch,
                    dilation_depth=args.dilation_depth,
                    dilation_repeat=args.dilation_repeat,
                    kernel_size=args.kernel_size,
                    upsampling_factor=args.upsampling_factor)
    logging.info(model)
    model.apply(initialize)
    model.train()

    # define loss and optimizer
    optimizer = torch.optim.Adam(model.parameters(),
                                 lr=args.lr,
                                 weight_decay=args.weight_decay)
    criterion = nn.CrossEntropyLoss()

    # define transforms
    scaler = StandardScaler()
    scaler.mean_ = read_hdf5(args.stats, "/mean")
    scaler.scale_ = read_hdf5(args.stats, "/scale")
    wav_transform = transforms.Compose(
        [lambda x: encode_mu_law(x, args.n_quantize)])
    feat_transform = transforms.Compose([lambda x: scaler.transform(x)])

    # define generator
    if os.path.isdir(args.waveforms):
        filenames = sorted(
            find_files(args.waveforms, "*.wav", use_dir_name=False))
        wav_list = [args.waveforms + "/" + filename for filename in filenames]
        feat_list = [
            args.feats + "/" + filename.replace(".wav", ".h5")
            for filename in filenames
        ]
    elif os.path.isfile(args.waveforms):
        wav_list = read_txt(args.waveforms)
        feat_list = read_txt(args.feats)
    else:
        logging.error("--waveforms should be directory or list.")
        sys.exit(1)
    assert len(wav_list) == len(feat_list)
    logging.info("number of training data = %d." % len(wav_list))
    generator = train_generator(wav_list,
                                feat_list,
                                receptive_field=model.receptive_field,
                                batch_size=args.batch_size,
                                wav_transform=wav_transform,
                                feat_transform=feat_transform,
                                shuffle=True,
                                upsampling_factor=args.upsampling_factor,
                                use_speaker_code=args.use_speaker_code)
    while not generator.queue.full():
        time.sleep(0.1)

    # resume
    if args.resume is not None:
        checkpoint = torch.load(args.resume)
        model.load_state_dict(checkpoint["model"])
        optimizer.load_state_dict(checkpoint["optimizer"])
        iterations = checkpoint["iterations"]
        logging.info("restored from %d-iter checkpoint." % iterations)
    else:
        iterations = 0

    # send to gpu
    if torch.cuda.is_available():
        model.cuda()
        criterion.cuda()
    else:
        logging.error("gpu is not available. please check the setting.")
        sys.exit(1)

    # train
    loss = 0
    total = 0
    for i in six.moves.range(iterations, args.iters):
        start = time.time()
        (batch_x, batch_h), batch_t = generator.next()
        batch_output = model(batch_x, batch_h)[0]
        batch_loss = criterion(batch_output[model.receptive_field:],
                               batch_t[model.receptive_field:])
        optimizer.zero_grad()
        batch_loss.backward()
        optimizer.step()
        loss += batch_loss.data[0]
        total += time.time() - start
        logging.debug("batch loss = %.3f (%.3f sec / batch)" %
                      (batch_loss.data[0], time.time() - start))

        # report progress
        if (i + 1) % args.intervals == 0:
            logging.info(
                "(iter:%d) average loss = %.6f (%.3f sec / batch)" %
                (i + 1, loss / args.intervals, total / args.intervals))
            logging.info(
                "estimated required time = "
                "{0.days:02}:{0.hours:02}:{0.minutes:02}:{0.seconds:02}".
                format(
                    relativedelta(seconds=int((args.iters - (i + 1)) *
                                              (total / args.intervals)))))
            loss = 0
            total = 0

        # save intermidiate model
        if (i + 1) % args.checkpoints == 0:
            save_checkpoint(args.expdir, model, optimizer, i + 1)

    # save final model
    model.cpu()
    torch.save({"model": model.state_dict()},
               args.expdir + "/checkpoint-final.pkl")
    logging.info("final checkpoint created.")
Ejemplo n.º 4
0
def main():
    parser = argparse.ArgumentParser()
    # path setting
    parser.add_argument("--waveforms",
                        required=True,
                        type=str,
                        help="directory or list of wav files")
    parser.add_argument("--feats",
                        required=True,
                        type=str,
                        help="directory or list of aux feat files")
    parser.add_argument("--stats",
                        required=True,
                        type=str,
                        help="hdf5 file including statistics")
    parser.add_argument("--expdir",
                        required=True,
                        type=str,
                        help="directory to save the model")
    parser.add_argument("--feature_type",
                        default="world",
                        choices=["world", "melspc"],
                        type=str,
                        help="feature type")
    # network structure setting
    parser.add_argument("--n_quantize",
                        default=256,
                        type=int,
                        help="number of quantization")
    parser.add_argument("--n_aux",
                        default=28,
                        type=int,
                        help="number of dimension of aux feats")
    parser.add_argument("--n_resch",
                        default=512,
                        type=int,
                        help="number of channels of residual output")
    parser.add_argument("--n_skipch",
                        default=256,
                        type=int,
                        help="number of channels of skip output")
    parser.add_argument("--dilation_depth",
                        default=10,
                        type=int,
                        help="depth of dilation")
    parser.add_argument("--dilation_repeat",
                        default=1,
                        type=int,
                        help="number of repeating of dilation")
    parser.add_argument("--kernel_size",
                        default=2,
                        type=int,
                        help="kernel size of dilated causal convolution")
    parser.add_argument("--upsampling_factor",
                        default=80,
                        type=int,
                        help="upsampling factor of aux features")
    parser.add_argument("--use_upsampling_layer",
                        default=True,
                        type=strtobool,
                        help="flag to use upsampling layer")
    parser.add_argument("--use_speaker_code",
                        default=False,
                        type=strtobool,
                        help="flag to use speaker code")
    # network training setting
    parser.add_argument("--lr", default=1e-4, type=float, help="learning rate")
    parser.add_argument("--weight_decay",
                        default=0.0,
                        type=float,
                        help="weight decay coefficient")
    parser.add_argument(
        "--batch_length",
        default=20000,
        type=int,
        help="batch length (if set 0, utterance batch will be used)")
    parser.add_argument(
        "--batch_size",
        default=1,
        type=int,
        help="batch size (if use utterance batch, batch_size will be 1.")
    parser.add_argument("--iters",
                        default=200000,
                        type=int,
                        help="number of iterations")
    # other setting
    parser.add_argument("--checkpoints",
                        default=10000,
                        type=int,
                        help="how frequent saving model")
    parser.add_argument("--intervals",
                        default=100,
                        type=int,
                        help="log interval")
    parser.add_argument("--seed", default=1, type=int, help="seed number")
    parser.add_argument("--resume",
                        default=None,
                        nargs="?",
                        type=str,
                        help="model path to restart training")
    parser.add_argument("--n_gpus", default=1, type=int, help="number of gpus")
    parser.add_argument("--verbose", default=1, type=int, help="log level")
    args = parser.parse_args()

    # set log level
    if args.verbose == 1:
        logging.basicConfig(
            level=logging.INFO,
            format=
            '%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s',
            datefmt='%m/%d/%Y %I:%M:%S')
    elif args.verbose > 1:
        logging.basicConfig(
            level=logging.DEBUG,
            format=
            '%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s',
            datefmt='%m/%d/%Y %I:%M:%S')
    else:
        logging.basicConfig(
            level=logging.WARNING,
            format=
            '%(asctime)s (%(module)s:%(lineno)d) %(levelname)s: %(message)s',
            datefmt='%m/%d/%Y %I:%M:%S')
        logging.warning("logging is disabled.")

    # show argmument
    for key, value in vars(args).items():
        logging.info("%s = %s" % (key, str(value)))

    # make experimental directory
    if not os.path.exists(args.expdir):
        os.makedirs(args.expdir)

    # fix seed
    os.environ['PYTHONHASHSEED'] = str(args.seed)
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)

    # fix slow computation of dilated conv
    # https://github.com/pytorch/pytorch/issues/15054#issuecomment-450191923
    torch.backends.cudnn.benchmark = True

    # save args as conf
    torch.save(args, args.expdir + "/model.conf")

    # define network
    if args.use_upsampling_layer:
        upsampling_factor = args.upsampling_factor
    else:
        upsampling_factor = 0
    model = WaveNet(n_quantize=args.n_quantize,
                    n_aux=args.n_aux,
                    n_resch=args.n_resch,
                    n_skipch=args.n_skipch,
                    dilation_depth=args.dilation_depth,
                    dilation_repeat=args.dilation_repeat,
                    kernel_size=args.kernel_size,
                    upsampling_factor=upsampling_factor)
    logging.info(model)
    model.apply(initialize)
    model.train()

    if args.n_gpus > 1:
        device_ids = range(args.n_gpus)
        model = torch.nn.DataParallel(model, device_ids)
        model.receptive_field = model.module.receptive_field
        if args.n_gpus > args.batch_size:
            logging.warning("batch size is less than number of gpus.")

    # define optimizer and loss
    optimizer = torch.optim.Adam(model.parameters(),
                                 lr=args.lr,
                                 weight_decay=args.weight_decay)
    criterion = nn.CrossEntropyLoss()

    # define transforms
    scaler = StandardScaler()
    scaler.mean_ = read_hdf5(args.stats, "/" + args.feature_type + "/mean")
    scaler.scale_ = read_hdf5(args.stats, "/" + args.feature_type + "/scale")
    wav_transform = transforms.Compose(
        [lambda x: encode_mu_law(x, args.n_quantize)])
    feat_transform = transforms.Compose([lambda x: scaler.transform(x)])

    # define generator
    if os.path.isdir(args.waveforms):
        filenames = sorted(
            find_files(args.waveforms, "*.wav", use_dir_name=False))
        wav_list = [args.waveforms + "/" + filename for filename in filenames]
        feat_list = [
            args.feats + "/" + filename.replace(".wav", ".h5")
            for filename in filenames
        ]
    elif os.path.isfile(args.waveforms):
        wav_list = read_txt(args.waveforms)
        feat_list = read_txt(args.feats)
    else:
        logging.error("--waveforms should be directory or list.")
        sys.exit(1)
    assert len(wav_list) == len(feat_list)
    logging.info("number of training data = %d." % len(wav_list))
    generator = train_generator(wav_list,
                                feat_list,
                                receptive_field=model.receptive_field,
                                batch_length=args.batch_length,
                                batch_size=args.batch_size,
                                feature_type=args.feature_type,
                                wav_transform=wav_transform,
                                feat_transform=feat_transform,
                                shuffle=True,
                                upsampling_factor=args.upsampling_factor,
                                use_upsampling_layer=args.use_upsampling_layer,
                                use_speaker_code=args.use_speaker_code)

    # charge minibatch in queue
    while not generator.queue.full():
        time.sleep(0.1)

    # resume model and optimizer
    if args.resume is not None and len(args.resume) != 0:
        checkpoint = torch.load(args.resume,
                                map_location=lambda storage, loc: storage)
        iterations = checkpoint["iterations"]
        if args.n_gpus > 1:
            model.module.load_state_dict(checkpoint["model"])
        else:
            model.load_state_dict(checkpoint["model"])
        optimizer.load_state_dict(checkpoint["optimizer"])
        logging.info("restored from %d-iter checkpoint." % iterations)
    else:
        iterations = 0

    # check gpu and then send to gpu
    if torch.cuda.is_available():
        model.cuda()
        criterion.cuda()
        for state in optimizer.state.values():
            for key, value in state.items():
                if torch.is_tensor(value):
                    state[key] = value.cuda()
    else:
        logging.error("gpu is not available. please check the setting.")
        sys.exit(1)

    # train
    loss = 0
    total = 0
    for i in six.moves.range(iterations, args.iters):
        start = time.time()
        (batch_x, batch_h), batch_t = generator.next()
        batch_output = model(batch_x, batch_h)
        batch_loss = criterion(
            batch_output[:, model.receptive_field:].contiguous().view(
                -1, args.n_quantize),
            batch_t[:, model.receptive_field:].contiguous().view(-1))
        optimizer.zero_grad()
        batch_loss.backward()
        optimizer.step()
        loss += batch_loss.item()
        total += time.time() - start
        logging.debug("batch loss = %.3f (%.3f sec / batch)" %
                      (batch_loss.item(), time.time() - start))

        # report progress
        if (i + 1) % args.intervals == 0:
            logging.info(
                "(iter:%d) average loss = %.6f (%.3f sec / batch)" %
                (i + 1, loss / args.intervals, total / args.intervals))
            logging.info(
                "estimated required time = "
                "{0.days:02}:{0.hours:02}:{0.minutes:02}:{0.seconds:02}".
                format(
                    relativedelta(seconds=int((args.iters - (i + 1)) *
                                              (total / args.intervals)))))
            loss = 0
            total = 0

        # save intermidiate model
        if (i + 1) % args.checkpoints == 0:
            if args.n_gpus > 1:
                save_checkpoint(args.expdir, model.module, optimizer, i + 1)
            else:
                save_checkpoint(args.expdir, model, optimizer, i + 1)

    # save final model
    if args.n_gpus > 1:
        torch.save({"model": model.module.state_dict()},
                   args.expdir + "/checkpoint-final.pkl")
    else:
        torch.save({"model": model.state_dict()},
                   args.expdir + "/checkpoint-final.pkl")
    logging.info("final checkpoint created.")