Ejemplo n.º 1
0
def test_inversion_more_complicated_with_max_levels():
    encoder = OneHotEncoder({'animal': 2, 'color': 2}, ['weight', 'height'])

    data = [{'animal': 'cat', 'color': 'blue', 'weight': 6.0, 'height': 88.9},
            {'animal': 'cat', 'color': 'red', 'weight': 3.0, 'height': 44.9},
            {'animal': 'dog', 'color': 'yellow', 'weight': 5.5, 'height': 2.5},
            {'animal': 'fish', 'color': 'blue', 'weight': 7.0, 'height': 3233.2},
            {'animal': 'cat', 'color': 'magenta', 'weight': 2.0, 'height': 666.6},
            {'animal': 'mouse', 'color': 'red', 'weight': 0.0, 'height': 55.5},
            {'animal': 'mouse', 'color': 'blah', 'weight': 99.9, 'height': 33}]

    encoder.load_from_data_stream(data)

    encoded_data = encoder.encode_data(data)
    data_decoded = encoder.decode_data(encoded_data)

    expected = [{'height': 88.9, 'weight': 6.0, 'animal': 'cat', 'color': 'blue'},
                {'height': 44.9, 'weight': 3.0, 'animal': 'cat', 'color': 'red'},
                {'height': 2.5, 'weight': 5.5, 'color': 'UNKNOWN_CATEGORICAL_LEVEL', 'animal': 'UNKNOWN_CATEGORICAL_LEVEL'},
                {'height': 3233.2, 'weight': 7.0, 'color': 'blue', 'animal': 'UNKNOWN_CATEGORICAL_LEVEL'},
                {'height': 666.6, 'weight': 2.0, 'animal': 'cat', 'color': 'UNKNOWN_CATEGORICAL_LEVEL'},
                {'height': 55.5, 'weight': 0.0, 'animal': 'mouse', 'color': 'red'},
                {'height': 33, 'weight': 99.9, 'animal': 'mouse', 'color': 'UNKNOWN_CATEGORICAL_LEVEL'}]

    assert data_decoded == expected
Ejemplo n.º 2
0
def test_save_load():
    filename = NamedTemporaryFile().name

    encoder = OneHotEncoder(['animal', 'color'], ['weight'], max_levels_default=100)

    data = [{'animal': 'cat', 'color': 'blue', 'weight': 6.0},
            {'animal': 'cat', 'color': 'red', 'weight': 3.0},
            {'animal': 'dog', 'color': 'yellow', 'weight': 5.5},
            {'animal': 'fish', 'color': 'blue', 'weight': 7.0},
            {'animal': 'cat', 'color': 'magenta', 'weight': 2.0},
            {'animal': 'mouse', 'color': 'purple', 'weight': 0.0},
            {'animal': 'mouse', 'color': 'black', 'weight': 99.9}]

    encoder.load_from_data_stream(data)

    encoded_data = encoder.encode_data(data)

    encoder.save(filename)

    encoder_from_file = OneHotEncoder([], [])
    encoder_from_file.load_from_file(filename)

    encoded_data_from_file = encoder_from_file.encode_data(data)

    assert encoded_data == encoded_data_from_file
Ejemplo n.º 3
0
def run_example(stats=False):
    encoder = OneHotEncoder({'animal': 2, 'color': 1}, ['weight', 'height'])

    data = [{'animal': 'cat', 'color': 'blue', 'weight': 6.0, 'height': 88.9, 'extra_junk': 'blah'},
            {'animal': 'cat', 'color': 'red', 'weight': 3.0, 'height': 44.9},
            {'animal': 'dog', 'color': 'yellow', 'weight': 5.5, 'height': 2.5},
            {'animal': 'fish', 'color': 'blue', 'weight': 7.0, 'height': 3233.2},
            {'animal': 'cat', 'color': 'magenta', 'weight': 2.0, 'height': 666.6},
            {'animal': 'mouse', 'color': 'red', 'weight': 0.0, 'height': 55.5},
            {'animal': 'mouse', 'color': 'blah', 'weight': 99.9, 'height': 33}]

    encoder.load_from_data_stream(data)

    encoded_data = encoder.encode_data(data)
    data_decoded = encoder.decode_data(encoded_data)

    expected = [{'height': 88.9, 'weight': 6.0, 'animal': 'cat', 'color': 'blue'},
                {'height': 44.9, 'weight': 3.0, 'animal': 'cat', 'color': 'UNKNOWN_CATEGORICAL_LEVEL'},
                {'height': 2.5, 'weight': 5.5, 'color': 'UNKNOWN_CATEGORICAL_LEVEL', 'animal': 'UNKNOWN_CATEGORICAL_LEVEL'},
                {'height': 3233.2, 'weight': 7.0, 'color': 'blue', 'animal': 'UNKNOWN_CATEGORICAL_LEVEL'},
                {'height': 666.6, 'weight': 2.0, 'animal': 'cat', 'color': 'UNKNOWN_CATEGORICAL_LEVEL'},
                {'height': 55.5, 'weight': 0.0, 'animal': 'mouse', 'color': 'UNKNOWN_CATEGORICAL_LEVEL'},
                {'height': 33, 'weight': 99.9, 'animal': 'mouse', 'color': 'UNKNOWN_CATEGORICAL_LEVEL'}]

    assert data_decoded == expected

    # add number stats?
    if stats:
        encoder.add_numeric_stats(data)

    # check the package
    packaged = encoder.package_data()
    return packaged
Ejemplo n.º 4
0
def test_load_from_data_encodes_data():
    encoder = OneHotEncoder(['animal', 'color'], ['weight'], max_levels_default=100)
    data = [{'animal': 'cat', 'color': 'blue', 'weight': 1.0},
            {'animal': 'cat', 'color': 'red', 'weight': 3.0},
            {'animal': 'dog', 'color': 'yellow', 'weight': 5.5},
            {'animal': 'fish', 'color': 'blue', 'weight': 7.0},
            {'animal': 'cat', 'color': 'blue', 'weight': 2.0},
            {'animal': 'cat', 'color': 'blue', 'weight': 0.0},
            {'animal': 'cat', 'color': 'blue', 'weight': 99.9}]

    encoder.load_from_data_stream(data)

    encoded_data = [encoder.encode_row(row) for row in data]
    assert len(encoded_data) == len(data)
    assert len(encoded_data[0]) != len(data[0])
Ejemplo n.º 5
0
def test_load_from_data():
    encoder = OneHotEncoder(['animal', 'color'], ['weight'], max_levels_default=100)
    data = [{'animal': 'cat', 'color': 'blue', 'weight': 1.0},
            {'animal': 'cat', 'color': 'red', 'weight': 3.0},
            {'animal': 'dog', 'color': 'yellow', 'weight': 5.5},
            {'animal': 'fish', 'color': 'blue', 'weight': 7.0},
            {'animal': 'cat', 'color': 'blue', 'weight': 2.0},
            {'animal': 'cat', 'color': 'blue', 'weight': 0.0},
            {'animal': 'cat', 'color': 'blue', 'weight': 99.9}]

    assert encoder.encoder is None
    assert encoder.decoder is None
    assert encoder.one_hot_encoder_dicts is None

    encoder.load_from_data_stream(data)

    assert encoder.encoder is not None
    assert encoder.decoder is not None
    assert encoder.one_hot_encoder_dicts is not None
Ejemplo n.º 6
0
def test_inversion_more_complicated():
    encoder = OneHotEncoder(['animal', 'color'], ['weight', 'height'], max_levels_default=100)

    data = [{'animal': 'cat', 'color': 'blue', 'weight': 6.0, 'height': 88.9},
            {'animal': 'cat', 'color': 'red', 'weight': 3.0, 'height': 44.9},
            {'animal': 'dog', 'color': 'yellow', 'weight': 5.5, 'height': 2.5},
            {'animal': 'fish', 'color': 'blue', 'weight': 7.0, 'height': 3233.2},
            {'animal': 'cat', 'color': 'magenta', 'weight': 2.0, 'height': 666.6},
            {'animal': 'mouse', 'color': 'red', 'weight': 0.0, 'height': 55.5},
            {'animal': 'mouse', 'color': 'blah', 'weight': 99.9, 'height': 33}]

    encoder.load_from_data_stream(data)

    encoded_data = encoder.encode_data(data)

    data_decoded = encoder.decode_data(encoded_data)
    assert data_decoded == data

    data_recoded = encoder.encode_data(data_decoded)
    assert data_recoded == encoded_data
Ejemplo n.º 7
0
def test_inversion():
    encoder = OneHotEncoder(['animal', 'color'], ['weight'], max_levels_default=100)

    data = [{'animal': 'cat', 'color': 'blue', 'weight': 6.0},
            {'animal': 'cat', 'color': 'red', 'weight': 3.0},
            {'animal': 'dog', 'color': 'yellow', 'weight': 5.5},
            {'animal': 'fish', 'color': 'blue', 'weight': 7.0},
            {'animal': 'cat', 'color': 'magenta', 'weight': 2.0},
            {'animal': 'mouse', 'color': 'purple', 'weight': 0.0},
            {'animal': 'mouse', 'color': 'black', 'weight': 99.9}]

    encoder.load_from_data_stream(data)

    encoded_data = encoder.encode_data(data)

    data_decoded = encoder.decode_data(encoded_data)
    assert data_decoded == data

    data_recoded = encoder.encode_data(data_decoded)
    assert data_recoded == encoded_data
Ejemplo n.º 8
0
def test_html_form():
    encoder = OneHotEncoder({'animal': 2, 'color': 1}, ['weight', 'height'])

    data = [{'animal': 'cat', 'color': 'blue', 'weight': 6.0, 'height': 88.9, 'extra_junk': 'blah'},
            {'animal': 'cat', 'color': 'red', 'weight': 3.0, 'height': 44.9},
            {'animal': 'dog', 'color': 'yellow', 'weight': 5.5, 'height': 2.5},
            {'animal': 'fish', 'color': 'blue', 'weight': 7.0, 'height': 3233.2},
            {'animal': 'cat', 'color': 'magenta', 'weight': 2.0, 'height': 666.6},
            {'animal': 'mouse', 'color': 'red', 'weight': 0.0, 'height': 55.5},
            {'animal': 'mouse', 'color': 'blah', 'weight': 99.9, 'height': 33}]

    encoder.load_from_data_stream(data)
    package = encoder.package_data()

    expected = {'max_levels_default': 10000,
                'numeric_cols': ['weight', 'height'],
                'categorical_n_levels_dict': {'animal': 2, 'color': 1},
                'one_hot_encoder_dicts': {'animal': {'cat': 0, 'mouse': 1}, 'color': {'blue': 0}},
                'numeric_stats': None,
                'omit_cols': None}

    assert package == expected

    html_header, form_div = encoder.get_form_html_elements()

    form_tags = ['id="form"', 'schema', 'alpaca', 'script']

    for tag in form_tags:
        assert tag in form_div

    header_tags = ['jquery', 'bootstrap', 'alpaca', 'script']

    for tag in header_tags:
        assert tag in html_header

    html_page = encoder.get_form_html_page()

    assert "<html" in html_page
    assert html_header in html_page
    assert form_div in html_page
Ejemplo n.º 9
0
def get_round_trip_decoded(stats=False, omit_cols=None):
    encoder = OneHotEncoder({'animal': 2, 'color': 1}, ['weight', 'height'], omit_cols=omit_cols)

    data = [{'animal': 'cat', 'color': 'blue', 'weight': 6.0, 'height': 88.9, 'extra_junk': 'blah'},
            {'animal': 'cat', 'color': 'red', 'weight': 3.0, 'height': 44.9},
            {'animal': 'dog', 'color': 'yellow', 'weight': 5.5, 'height': 2.5},
            {'animal': 'fish', 'color': 'blue', 'weight': 7.0, 'height': 3233.2},
            {'animal': 'cat', 'color': 'magenta', 'weight': 2.0, 'height': 666.6},
            {'animal': 'mouse', 'color': 'red', 'weight': 0.0, 'height': 55.5},
            {'animal': 'mouse', 'color': 'blah', 'weight': 99.9, 'height': 33}]

    encoder.load_from_data_stream(data)

    encoded_data = encoder.encode_data(data)
    data_decoded = encoder.decode_data(encoded_data)

    # add number stats?
    if stats:
        encoder.add_numeric_stats(data)

    # check the package
    packaged = encoder.package_data()

    return data_decoded, packaged
Ejemplo n.º 10
0
def test_load_from_data_encodes_data_correctly():
    encoder = OneHotEncoder(['animal', 'color'], ['weight'], max_levels_default=100)

    data = [{'animal': 'cat', 'color': 'blue', 'weight': 6.0},
            {'animal': 'cat', 'color': 'red', 'weight': 3.0},
            {'animal': 'dog', 'color': 'yellow', 'weight': 5.5},
            {'animal': 'fish', 'color': 'blue', 'weight': 7.0},
            {'animal': 'cat', 'color': 'magenta', 'weight': 2.0},
            {'animal': 'mouse', 'color': 'purple', 'weight': 0.0},
            {'animal': 'mouse', 'color': 'black', 'weight': 99.9}]

    encoder.load_from_data_stream(data)

    encoded_data = [encoder.encode_row(row) for row in data]
    assert len(encoded_data) == len(data)
    assert len(encoded_data[0]) != len(data[0])

    first_row = encoded_data[0]

    expected = [6.0,  # weight is numeric and comes first
                1.0,  # animal is first categorical and cat is the most common, first row is cat
                0.0,  # animal, mouse is next most common, not a mouse
                0.0,  # animal, dog and fish tied for frequency but dog first alphabetically
                0.0,  # animal, fish, cat is not a fish
                1.0,  # color is next categorical alphabetically and blue is most common, first row blue
                0.0,  # black
                0.0,  # magenta
                0.0,  # purple
                0.0,  # red
                0.0]  # yellow
    assert first_row == expected

    second_row = encoded_data[1]

    expected = [3.0,  # weight is numeric and comes first
                1.0,  # animal is first categorical and cat is the most common, first row is cat
                0.0,  # animal, mouse is next most common, not a mouse
                0.0,  # animal, dog and fish tied for frequency but dog first alphabetically
                0.0,  # animal, fish, cat is not a fish
                0.0,  # color is next categorical alphabetically and blue is most common, first row blue
                0.0,  # black next alphabetically for ones with frequency 1
                0.0,  # magenta next
                0.0,  # purple
                1.0,  # red, this is red
                0.0]  # yellow
    assert second_row == expected

    last_row = encoded_data[-1]

    expected = [99.9,  # weight is numeric and comes first
                0.0,  # animal is first categorical and cat is the most common, first row is cat
                1.0,  # animal, mouse is next most common, not a mouse
                0.0,  # animal, dog and fish tied for frequency but dog first alphabetically
                0.0,  # animal, fish, cat is not a fish
                0.0,  # color is next categorical alphabetically and blue is most common, first row blue
                1.0,  # black next alphabetically for ones with frequency 1, this one black
                0.0,  # magenta next
                0.0,  # purple
                0.0,  # red
                0.0]  # yellow

    expected_total = [[6.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0],
                      [3.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0],
                      [5.5, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0],
                      [7.0, 0.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0],
                      [2.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0],
                      [0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0],
                      [99.9, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0]]

    assert encoded_data == expected_total