def merge_and_show(validation_results): merged_result = Winner.calculate() unneded_columnns = [ 'AdaBoostClassifier', 'GaussianNB', 'KerasAlgorithm', 'LightGBMAlgorithm', 'LinearSVC', 'MLPClassifier', 'NearestCentroid', 'RandomForestClassifier', 'SGDClassifier', 'SVC', 'XGBoostGbtreeAlgorithm', 'winner', 'failure', 'file', 'lines', 'ok', 'size', 'test', 'train', 'validate' ] validation_results_mean = [] for _i, row in validation_results.iterrows(): values = [ row['fbeta_run_0'], row['fbeta_run_1'], row['fbeta_run_2'], row['fbeta_run_3'], row['fbeta_run_4'], row['fbeta_run_5'] ] minimal_fbeta = min(values) maximal_fbeta = max(values) mean_fbeta = np.mean(values) validation_results_mean.append({ 'drive_csv': row['drive_csv'], 'minimal_fbeta': minimal_fbeta, 'maximal_fbeta': maximal_fbeta, 'mean_fbeta': mean_fbeta }) kfold = merged_result.merge(pd.DataFrame(validation_results_mean), on='drive_csv') return kfold[kfold['winner'] == 'DecisionTreeClassifier'].drop( unneded_columnns, axis='columns')
def __init__(self): self.merged_result = Winner.calculate() self.winners = [] self.algorithms = [ 'AdaBoostClassifier', 'DecisionTreeClassifier', 'FakeAlgorithm', 'GaussianNB', 'KerasAlgorithm', 'LightGBMAlgorithm', 'LinearSVC', 'MLPClassifier', 'NearestCentroid', 'RandomForestClassifier', 'SGDClassifier', 'SVC', 'XGBoostGbtreeAlgorithm' ] for algo in self.algorithms: total = 0 for _i, row in self.merged_result.iterrows(): if row['winner'] == algo: total += 1 self.winners.append(total) self.algorithm_short = [ x.replace('Classifier', '').replace('Algorithm', '') for x in self.algorithms ]
def run_all(): validation_file = 'validation.csv' if os.path.exists(validation_file): return pd.read_csv(validation_file) else: merged_result = Winner.calculate() all_drives = list( merged_result[merged_result['winner'] == 'DecisionTreeClassifier']['drive_csv']) results = [] with tqdm(total=len(all_drives)) as pbar: for drive_csv in all_drives: pbar.set_description(drive_csv) drive_information = {'drive_csv': drive_csv} drive_information.update(Validation.run(drive_csv)) results.append(drive_information) pbar.update(1) df = pd.DataFrame(results) df.to_csv(validation_file, index=False) return df
numUnits=1, name='Player 1', equipmentTypes=equipmentTypes) gameOverTime = None active = game elif isinstance(active, Game): if active.gameOver: if gameOverTime is None: gameOverTime = time.time() if time.time() - gameOverTime > 5: if active.player not in active.units: msg = 'You Lose' else: msg = 'You Win' active = Winner(active.units[0], screen, msg=msg) lastGameEndTime = time.time() elif isinstance(active, Winner) and time.time() - lastGameEndTime > 5: active = Choose(screen) for event in pygame.event.get(): if event.type == pygame.QUIT: sys.exit() active.Event(event) active.Draw(clock) # OSD ####################### fps = int(clock.get_fps())
while True: if isinstance(active, Choose): if active.startGameWith is not None: index, stats = active.startGameWith game = Game(screen) game.NewGame(index, stats, numUnits=1, name='Player 1') gameOverTime = None active = game elif isinstance(active, Game): if game.gameOver: if gameOverTime is None: gameOverTime = time.time() if time.time() - gameOverTime > 5: active = Winner(game.units[0], screen) lastGameEndTime = time.time() elif isinstance(active, Winner) and time.time() - lastGameEndTime > 5: # game = Game(screen) # game.NewGame(numUnits=2) # gameOverTime = None # active = game active = Choose(screen) for event in pygame.event.get(): if event.type == pygame.QUIT: sys.exit() active.Event(event)
def test_winner_to_dict(self): w = Winner("Jan Nowak", "Gold medal") assert w.to_dict() == {"name": "Jan Nowak", "prize": "Gold medal"}
def test_winner(self): w = Winner("Jan Nowak", "Gold medal") assert w.name == "Jan Nowak" assert w.prize == "Gold medal"
import csv from winner import Winner winners = [] with open("oscars.csv") as csvfile: reader = csv.reader(csvfile, skipinitialspace=True) next(reader) for row in reader: current_winner = Winner(*row) winners.append(current_winner) # for winner in winners: # print(f"{winner.name} won the Oscar for {winner.movie} in {winner.year} at age {winner.age}.") for winner in winners: if winner.year > 1979 and winner.year < 1990: print(winner.name) old_winner = winners[0] for winner in winners: if winner.age > old_winner.age: old_winner = winner print(old_winner.name, old_winner.age) meryl_streeps_wins = [(winner.movie, winner.year) for winner in winners if winner.name == "Meryl Streep"] print(meryl_streeps_wins)
import csv from winner import Winner winners = [] with open("oscars.csv") as csvfile: reader = csv.reader(csvfile, skipinitialspace=True) next(reader) for row in reader: winners.append(Winner(*row)) with open("oscars.csv", "w", newline="") as csvfile: writer = csv.writer(csvfile, quoting=csv.QUOTE_ALL) writer.writerow(["Index", "Year", "Age", "Name", "Movie"]) for winner in winners: winner.age -= 1 writer.writerow(winner.values_as_list())
import csv from winner import Winner with open("oscars.csv") as csvfile: reader = csv.reader(csvfile, skipinitialspace=True) index = sum(1 for row in reader) with open("oscars.csv", "a") as csvfile: writer = csv.writer(csvfile, quoting=csv.QUOTE_ALL) winner = Winner(index, 2020, 50, "Renée Zelweger", "Judy") writer.writerow(winner.values_as_list())