Ejemplo n.º 1
0
def dynamicPressure(lat, lon, height, jd, velocity, gamma=1.0):
    """ Calculate dynamic pressure at the given point on meteor's trajectory. 

    Either a single set of values can be given (i.e. every argument is a float number), or all arguments 
    must be numpy arrays.
        
    Arguments:
        lat: [float] Latitude of the meteor (radians).
        lon: [float] Longitude of the meteor (radians).
        height: [float] Height of the meteor (meters).
        jd: [float] Julian date of the meteor.
        velocity: [float] Velocity of the meteor (m/s).

    Keyword arguments:
        gamma: [flot] Drag coefficient. 1 by defualt.


    Return:
        dyn_pressure: [float] Dynamic pressure in Pascals.

    """

    # Get the atmospheric densities at every heights
    atm_dens = getAtmDensity_vect(lat, lon, height, jd)

    # Calculate the dynamic pressure
    dyn_pressure = atm_dens * gamma * velocity**2

    return dyn_pressure
Ejemplo n.º 2
0
def dynamicMass(bulk_density,
                lat,
                lon,
                height,
                jd,
                velocity,
                decel,
                gamma=1.0,
                shape_factor=1.21):
    """ Calculate dynamic mass at the given point on meteor's trajectory. 
    
    Either a single set of values can be given (i.e. every argument is a float number), or all arguments 
    must be numpy arrays.
        
    Arguments:
        bulk_density: [float] Bulk density of the meteoroid in kg/m^3.
        lat: [float] Latitude of the meteor (radians).
        lon: [flaot] Longitude of the meteor (radians).
        height: [float] Height of the meteor (meters).
        jd: [float] Julian date of the meteor.
        velocity: [float] Velocity of the meteor (m/s).
        decel: [float] Deceleration in m/s^2.

    Keyword arguments:
        gamma: [flot] Drag coefficient. 1 by defualt.
        shape_factor: [float] Shape factory for the body. 1.21 (sphere) by default. Other values:
            - sphere      = 1.21
            - hemisphere  = 1.92
            - cube        = 1.0
            - brick 2:3:5 = 1.55

    Return:
        dyn_mass: [float] Dynamic mass in kg.


    """

    # Calculate the atmosphere density at the given point
    atm_dens = getAtmDensity_vect(lat, lon, height, jd)

    # Calculate the dynamic mass
    dyn_mass = (1.0 /
                (bulk_density**2)) * ((gamma * shape_factor *
                                       (velocity**2) * atm_dens) / decel)**3

    return dyn_mass
Ejemplo n.º 3
0
def rescaleHeightToExponentialAtmosphere(lat, lon, ht_data, jd):
    """ Given observed heights, rescale them from the real NRLMSISE model to the a simplified exponential
        atmosphere model used by the Alpha-Beta procedure.
    
    Arguments:
        lat: [ndarray] Latitude in radians.
        lon: [ndarray] Longitude in radians.
        ht_data: [ndarray] Height in meters.
        jd: [float] Julian date.

    Return:
        rescaled_ht_data
    """
    def _expAtmosphere(ht_data, rho_atm_0=1.0):
        """ Compute the atmosphere mass density using a simple exponential model and a scale height. 
    
        Arguments:
            ht_data: [ndarray] Height in meters.

        Keyword arguments: 
            rho_atm_0: [float] Sea-level atmospheric air density in kg/m^3.

        Return:
            [float] Atmospheric mass density in kg/m^3.
        """

        return rho_atm_0 * (1 / np.e**(ht_data / HT_NORM_CONST))

    def _expAtmosphereHeight(air_density, rho_atm_0=1.225):
        """ Compute the height given the air density and exponential atmosphere assumption. 

        Arguments:
            air_density: [float] Air density in kg/m^3.

        Keyword arguments: 
            rho_atm_0: [float] Sea-level atmospheric air density in kg/m^3.

        Return:
            [float] Height in meters.
        """

        return HT_NORM_CONST * np.log(rho_atm_0 / air_density)

    # Get the atmosphere mass density from the NRLMSISE model for the observed heights
    atm_dens = getAtmDensity_vect(lat, lon, ht_data, jd)

    # Get the equivalent heights using the exponential atmosphre model
    ht_rescaled = _expAtmosphereHeight(atm_dens)

    # # Compare the models
    # plt.semilogy(ht_data/1000, atm_dens, label='NRLMSISE')
    # plt.semilogy(ht_data/1000, _expAtmosphere(ht_data), label='Exp')
    # plt.xlabel("Height (km)")
    # plt.ylabel("log air density kg/m3")
    # plt.legend()
    # plt.show()

    # # Compare the heights before and after rescaling
    # plt.scatter(ht_data/1000, ht_data - ht_rescaled)
    # plt.xlabel("Height (km)")
    # plt.ylabel("Height difference (m)")
    # plt.show()
    # sys.exit()

    return ht_rescaled
def projectNarrowPicks(dir_path, met, traj, traj_uncert, metal_mags,
                       frag_info):
    """ Projects picks done in the narrow-field to the given trajectory. """

    # Adjust initial velocity
    frag_v_init = traj.v_init + frag_info.v_init_adjust

    # List for computed values to be stored in a file
    computed_values = []

    # Generate the file name prefix from the time (take from trajectory)
    file_name_prefix = traj.file_name

    # List that holds datetimes of fragmentations, used for the light curve plot
    fragmentations_datetime = []

    # Go through picks from all sites
    for site_no in met.picks:

        # Extract site exact plate
        exact = met.exact_plates[site_no]

        # Extract site picks
        picks = np.array(met.picks[site_no])

        # Skip the site if there are no picks
        if not len(picks):
            continue

        print()
        print('Processing site:', site_no)

        # Find unique fragments
        fragments = np.unique(picks[:, 1])

        # If the fragmentation dictionary is empty, generate one
        if frag_info.frag_dict is None:
            frag_info.frag_dict = {
                float(i): i + 1
                for i in range(len(fragments))
            }

        # A list with results of finding the closest point on the trajectory
        cpa_list = []

        # Go thorugh all fragments and calculate the coordinates of the closest points on the trajectory and
        # the line of sight
        for frag in fragments:

            # Take only those picks from current fragment
            frag_picks = picks[picks[:, 1] == frag]

            # Sort by frame
            frag_picks = frag_picks[np.argsort(frag_picks[:, 0])]

            # Extract Unix timestamp
            ts = frag_picks[:, 11]
            tu = frag_picks[:, 12]

            # Extract theta, phi
            theta = np.radians(frag_picks[:, 4])
            phi = np.radians(frag_picks[:, 5])

            # Calculate azimuth +E of N
            azim = (np.pi / 2.0 - phi) % (2 * np.pi)

            # Calculate elevation
            elev = np.pi / 2.0 - theta

            # Calculate Julian date from Unix timestamp
            jd_data = np.array([unixTime2JD(s, u) for s, u in zip(ts, tu)])

            # Convert azim/elev to RA/Dec
            ra, dec = altAz2RADec_vect(azim, elev, jd_data, exact.lat,
                                       exact.lon)

            # Convert RA/Dec to ECI direction vector
            x_eci, y_eci, z_eci = raDec2ECI(ra, dec)

            # Convert station geocoords to ECEF coordinates
            x_stat_vect, y_stat_vect, z_stat_vect = geo2Cartesian_vect(exact.lat, exact.lon, exact.elev, \
                jd_data)

            # Find closest points of aproach for all measurements
            for jd, x, y, z, x_stat, y_stat, z_stat in np.c_[jd_data, x_eci, y_eci, z_eci, x_stat_vect, \
                y_stat_vect, z_stat_vect]:

                # Find the closest point of approach of every narrow LoS to the wide trajectory
                obs_cpa, rad_cpa, d = findClosestPoints(np.array([x_stat, y_stat, z_stat]), \
                    np.array([x, y, z]), traj.state_vect_mini, traj.radiant_eci_mini)

                # Calculate the height of each fragment for the given time
                rad_lat, rad_lon, height = cartesian2Geo(jd, *rad_cpa)

                cpa_list.append(
                    [frag, jd, obs_cpa, rad_cpa, d, rad_lat, rad_lon, height])

        # Find the coordinates of the first point in time on the trajectory and the first JD
        first_jd_indx = np.argmin([entry[1] for entry in cpa_list])
        jd_ref = cpa_list[first_jd_indx][1]
        rad_cpa_ref = cpa_list[first_jd_indx][3]

        print(jd_ref)

        # Set the beginning time to the beginning of the widefield trajectory
        ref_beg_time = (traj.jdt_ref - jd_ref) * 86400

        length_list = []
        decel_list = []

        # Go through all fragments and calculate the length from the reference point
        for frag in fragments:

            # Select only the data points of the current fragment
            cpa_data = [entry for entry in cpa_list if entry[0] == frag]

            # Lengths of the current fragment
            length_frag = []

            # Go through all projected points on the trajectory
            for entry in cpa_data:

                jd = entry[1]
                rad_cpa = entry[3]
                rad_lat = entry[5]
                rad_lon = entry[6]
                height = entry[7]

                # Calculate the distance from the first point on the trajectory and the given point
                dist = vectMag(rad_cpa - rad_cpa_ref)

                # Calculate the time in seconds
                time_sec = (jd - jd_ref) * 24 * 3600

                length_frag.append([time_sec, dist, rad_lat, rad_lon, height])
                length_list.append(
                    [frag, time_sec, dist, rad_lat, rad_lon, height])

            ### Fit the deceleration model to the length ###
            ##################################################################################################

            length_frag = np.array(length_frag)

            # Extract JDs and lengths into individual arrays
            time_data, length_data, lat_data, lon_data, height_data = length_frag.T

            if frag_info.fit_full_exp_model:

                # Fit the full exp deceleration model

                # First guess of the lag parameters
                p0 = [
                    frag_v_init, 0, 0, traj.jacchia_fit[0], traj.jacchia_fit[1]
                ]

                # Length residuals function
                def _lenRes(params, time_data, length_data):
                    return np.sum(
                        (length_data -
                         exponentialDeceleration(time_data, *params))**2)

                # Fit an exponential to the data
                res = scipy.optimize.basinhopping(_lenRes, p0, \
                    minimizer_kwargs={"method": "BFGS", 'args':(time_data, length_data)}, \
                    niter=1000)
                decel_fit = res.x

            else:

                # Fit only the deceleration parameters

                # First guess of the lag parameters
                p0 = [0, 0, traj.jacchia_fit[0], traj.jacchia_fit[1]]

                # Length residuals function
                def _lenRes(params, time_data, length_data, v_init):
                    return np.sum((length_data - exponentialDeceleration(
                        time_data, v_init, *params))**2)

                # Fit an exponential to the data
                res = scipy.optimize.basinhopping(_lenRes, p0, \
                    minimizer_kwargs={"method": "Nelder-Mead", 'args':(time_data, length_data, frag_v_init)}, \
                    niter=100)
                decel_fit = res.x

                # Add the velocity to the deceleration fit
                decel_fit = np.append(np.array([frag_v_init]), decel_fit)

            decel_list.append(decel_fit)

            print('---------------')
            print('Fragment', frag_info.frag_dict[frag], 'fit:')
            print(decel_fit)

            # plt.plot(time_data, length_data, label='Observed')
            # plt.plot(time_data, exponentialDeceleration(time_data, *decel_fit), label='fit')
            # plt.legend()
            # plt.xlabel('Time (s)')
            # plt.ylabel('Length (m)')
            # plt.title('Fragment {:d} fit'.format(frag_info.frag_dict[frag]))
            # plt.show()

            # # Plot the residuals
            # plt.plot(time_data, length_data - exponentialDeceleration(time_data, *decel_fit))
            # plt.xlabel('Time (s)')
            # plt.ylabel('Length O - C (m)')
            # plt.title('Fragment {:d} fit residuals'.format(frag_info.frag_dict[frag]))
            # plt.show()

            ##################################################################################################

        # Generate a unique color for every fragment
        colors = plt.cm.rainbow(np.linspace(0, 1, len(fragments)))

        # Create a dictionary for every fragment-color pair
        colors_frags = {frag: color for frag, color in zip(fragments, colors)}

        # Make sure lags start at 0
        offset_vel_max = 0

        # Plot the positions of fragments from the beginning to the end
        # Calculate and plot the lag of all fragments
        for frag, decel_fit in zip(fragments, decel_list):

            # Select only the data points of the current fragment
            length_frag = [entry for entry in length_list if entry[0] == frag]

            # Find the last time of the fragment appearance
            last_time = max([entry[1] for entry in length_frag])

            # Extract the observed data
            _, time_data, length_data, lat_data, lon_data, height_data = np.array(
                length_frag).T

            # Plot the positions of fragments from the first time to the end, using fitted parameters
            # The lag is calculated by subtracting an "average" velocity length from the observed length
            time_array = np.linspace(ref_beg_time, last_time, 1000)
            plt.plot(exponentialDeceleration(time_array, *decel_fit) - exponentialDeceleration(time_array, \
                frag_v_init, 0, offset_vel_max, 0, 0), time_array, linestyle='--', color=colors_frags[frag], \
                linewidth=0.75)

            # Plot the observed data
            fake_lag = length_data - exponentialDeceleration(
                time_data, frag_v_init, 0, offset_vel_max, 0, 0)
            plt.plot(fake_lag,
                     time_data,
                     color=colors_frags[frag],
                     linewidth=0.75)

            # Plot the fragment number at the end of each lag
            plt.text(fake_lag[-1] - 10, time_data[-1] + 0.02, str(frag_info.frag_dict[frag]), color=colors_frags[frag], \
                size=7, va='center', ha='right')

            # Check if the fragment has a fragmentation point and plot it
            if site_no in frag_info.fragmentation_points:
                if frag_info.frag_dict[frag] in frag_info.fragmentation_points[
                        site_no]:

                    # Get the lag of the fragmentation point
                    frag_point_time, fragments_list = frag_info.fragmentation_points[
                        site_no][frag_info.frag_dict[frag]]
                    frag_point_lag = exponentialDeceleration(frag_point_time, *decel_fit) \
                        - exponentialDeceleration(frag_point_time, frag_v_init, 0, offset_vel_max, 0, 0)

                    fragments_list = list(map(str, fragments_list))

                    # Save the fragmentation time in the list for light curve plot
                    fragmentations_datetime.append([jd2Date(jd_ref + frag_point_time/86400, dt_obj=True), \
                        fragments_list])

                    # Plot the fragmentation point
                    plt.scatter(frag_point_lag, frag_point_time, s=20, zorder=4, color=colors_frags[frag], \
                        edgecolor='k', linewidth=0.5, label='Fragmentation: ' + ",".join(fragments_list))

        # Plot reference time
        plt.title('Reference time: ' + str(jd2Date(jd_ref, dt_obj=True)))

        plt.gca().invert_yaxis()
        plt.grid(color='0.9')

        plt.xlabel('Lag (m)')
        plt.ylabel('Time (s)')

        plt.ylim(ymax=ref_beg_time)

        plt.legend()

        plt.savefig(os.path.join(dir_path, file_name_prefix \
            + '_fragments_deceleration_site_{:s}.png'.format(str(site_no))), dpi=300)

        plt.show()

        time_min = np.inf
        time_max = -np.inf
        ht_min = np.inf
        ht_max = -np.inf

        ### PLOT DYNAMIC PRESSURE FOR EVERY FRAGMENT
        for frag, decel_fit in zip(fragments, decel_list):

            # Select only the data points of the current fragment
            length_frag = [entry for entry in length_list if entry[0] == frag]

            # Extract the observed data
            _, time_data, length_data, lat_data, lon_data, height_data = np.array(
                length_frag).T

            # Fit a linear dependance of time vs. height
            line_fit, _ = scipy.optimize.curve_fit(lineFunc, time_data,
                                                   height_data)

            # Get the time and height limits
            time_min = min(time_min, min(time_data))
            time_max = max(time_max, max(time_data))
            ht_min = min(ht_min, min(height_data))
            ht_max = max(ht_max, max(height_data))

            ### CALCULATE OBSERVED DYN PRESSURE

            # Get the velocity at every point in time
            velocities = exponentialDecelerationVel(time_data, *decel_fit)

            # Calculate the dynamic pressure
            dyn_pressure = dynamicPressure(lat_data, lon_data, height_data,
                                           jd_ref, velocities)

            ###

            # Plot Observed height vs. dynamic pressure
            plt.plot(dyn_pressure / 10**3,
                     height_data / 1000,
                     color=colors_frags[frag],
                     zorder=3,
                     linewidth=0.75)

            # Plot the fragment number at the end of each lag
            plt.text(dyn_pressure[-1]/10**3, height_data[-1]/1000 - 0.02, str(frag_info.frag_dict[frag]), \
                color=colors_frags[frag], size=7, va='top', zorder=3)

            ### CALCULATE MODELLED DYN PRESSURE

            time_array = np.linspace(ref_beg_time, max(time_data), 1000)

            # Calculate the modelled height
            height_array = lineFunc(time_array, *line_fit)

            # Get the time and height limits
            time_min = min(time_min, min(time_array))
            time_max = max(time_max, max(time_array))
            ht_min = min(ht_min, min(height_array))
            ht_max = max(ht_max, max(height_array))

            # Get the atmospheric densities at every heights
            atm_dens_model = getAtmDensity_vect(np.zeros_like(time_array) + np.mean(lat_data), \
                np.zeros_like(time_array) + np.mean(lon_data), height_array, jd_ref)

            # Get the velocity at every point in time
            velocities_model = exponentialDecelerationVel(
                time_array, *decel_fit)

            # Calculate the dynamic pressure
            dyn_pressure_model = atm_dens_model * DRAG_COEFF * velocities_model**2

            ###

            # Plot Modelled height vs. dynamic pressure
            plt.plot(dyn_pressure_model/10**3, height_array/1000, color=colors_frags[frag], zorder=3, \
                linewidth=0.75, linestyle='--')

            # Check if the fragment has a fragmentation point and plot it
            if site_no in frag_info.fragmentation_points:
                if frag_info.frag_dict[frag] in frag_info.fragmentation_points[
                        site_no]:

                    # Get the lag of the fragmentation point
                    frag_point_time, fragments_list = frag_info.fragmentation_points[
                        site_no][frag_info.frag_dict[frag]]

                    # Get the fragmentation height
                    frag_point_height = lineFunc(frag_point_time, *line_fit)

                    # Calculate the velocity at fragmentation
                    frag_point_velocity = exponentialDecelerationVel(
                        frag_point_time, *decel_fit)

                    # Calculate the atm. density at the fragmentation point
                    frag_point_atm_dens = getAtmDensity(np.mean(lat_data), np.mean(lon_data), frag_point_height, \
                        jd_ref)

                    # Calculate the dynamic pressure at fragmentation in kPa
                    frag_point_dyn_pressure = frag_point_atm_dens * DRAG_COEFF * frag_point_velocity**2
                    frag_point_dyn_pressure /= 10**3

                    # Compute height in km
                    frag_point_height_km = frag_point_height / 1000

                    fragments_list = map(str, fragments_list)

                    # Plot the fragmentation point
                    plt.scatter(frag_point_dyn_pressure, frag_point_height_km, s=20, zorder=5, \
                        color=colors_frags[frag], edgecolor='k', linewidth=0.5, \
                        label='Fragmentation: ' + ",".join(fragments_list))

                    ### Plot the errorbar

                    # Compute the lower veloicty estimate
                    stddev_multiplier = 2.0

                    # Check if the uncertainty exists
                    if traj_uncert.v_init is None:
                        v_init_uncert = 0
                    else:
                        v_init_uncert = traj_uncert.v_init

                    # Compute the range of velocities
                    lower_vel = frag_point_velocity - stddev_multiplier * v_init_uncert
                    higher_vel = frag_point_velocity + stddev_multiplier * v_init_uncert

                    # Assume the atmosphere density can vary +/- 25% (Gunther's analysis)
                    lower_atm_dens = 0.75 * frag_point_atm_dens
                    higher_atm_dens = 1.25 * frag_point_atm_dens

                    # Compute lower and higher range for dyn pressure in kPa
                    lower_frag_point_dyn_pressure = (
                        lower_atm_dens * DRAG_COEFF * lower_vel**2) / 10**3
                    higher_frag_point_dyn_pressure = (
                        higher_atm_dens * DRAG_COEFF * higher_vel**2) / 10**3

                    # Compute errors
                    lower_error = abs(frag_point_dyn_pressure -
                                      lower_frag_point_dyn_pressure)
                    higher_error = abs(frag_point_dyn_pressure -
                                       higher_frag_point_dyn_pressure)

                    print(frag_point_dyn_pressure, frag_point_height_km, [
                        lower_frag_point_dyn_pressure,
                        higher_frag_point_dyn_pressure
                    ])

                    # Plot the errorbar
                    plt.errorbar(frag_point_dyn_pressure, frag_point_height_km, \
                        xerr=[[lower_error], [higher_error]], fmt='--', capsize=5, zorder=4, \
                        color=colors_frags[frag], label='+/- 25% $\\rho_{atm}$, 2$\\sigma_v$ ')

                    # Save the computed fragmentation values to list
                    # Site, Reference JD, Relative time, Fragment ID, Height, Dyn pressure, Dyn pressure lower \
                    #   bound, Dyn pressure upper bound
                    computed_values.append([site_no, jd_ref, frag_point_time, frag_info.frag_dict[frag], \
                        frag_point_height_km, frag_point_dyn_pressure, lower_frag_point_dyn_pressure, \
                        higher_frag_point_dyn_pressure])

                    ######

        # Plot reference time
        plt.title('Reference time: ' + str(jd2Date(jd_ref, dt_obj=True)))

        plt.xlabel('Dynamic pressure (kPa)')
        plt.ylabel('Height (km)')

        plt.ylim([ht_min / 1000, ht_max / 1000])

        # Remove repeating labels and plot the legend
        handles, labels = plt.gca().get_legend_handles_labels()
        by_label = OrderedDict(zip(labels, handles))
        plt.legend(by_label.values(), by_label.keys())

        plt.grid(color='0.9')

        # Create the label for seconds
        ax2 = plt.gca().twinx()
        ax2.set_ylim([time_max, time_min])
        ax2.set_ylabel('Time (s)')

        plt.savefig(os.path.join(dir_path, file_name_prefix \
            + '_fragments_dyn_pressures_site_{:s}.png'.format(str(site_no))), dpi=300)

        plt.show()

        ### PLOT DYNAMICS MASSES FOR ALL FRAGMENTS
        for frag, decel_fit in zip(fragments, decel_list):

            # Select only the data points of the current fragment
            length_frag = [entry for entry in length_list if entry[0] == frag]

            # Extract the observed data
            _, time_data, length_data, lat_data, lon_data, height_data = np.array(
                length_frag).T

            # Fit a linear dependance of time vs. height
            line_fit, _ = scipy.optimize.curve_fit(lineFunc, time_data,
                                                   height_data)

            ### CALCULATE OBSERVED DYN MASS

            # Get the velocity at every point in time
            velocities = exponentialDecelerationVel(time_data, *decel_fit)

            decelerations = np.abs(
                exponentialDecelerationDecel(time_data, *decel_fit))

            # Calculate the dynamic mass
            dyn_mass = dynamicMass(frag_info.bulk_density, lat_data, lon_data, height_data, jd_ref, \
                velocities, decelerations)

            ###

            # Plot Observed height vs. dynamic pressure
            plt.plot(dyn_mass * 1000,
                     height_data / 1000,
                     color=colors_frags[frag],
                     zorder=3,
                     linewidth=0.75)

            # Plot the fragment number at the end of each lag
            plt.text(dyn_mass[-1]*1000, height_data[-1]/1000 - 0.02, str(frag_info.frag_dict[frag]), \
                color=colors_frags[frag], size=7, va='top', zorder=3)

            ### CALCULATE MODELLED DYN MASS

            time_array = np.linspace(ref_beg_time, max(time_data), 1000)

            # Calculate the modelled height
            height_array = lineFunc(time_array, *line_fit)

            # Get the velocity at every point in time
            velocities_model = exponentialDecelerationVel(
                time_array, *decel_fit)

            # Get the deceleration
            decelerations_model = np.abs(
                exponentialDecelerationDecel(time_array, *decel_fit))

            # Calculate the modelled dynamic mass
            dyn_mass_model = dynamicMass(frag_info.bulk_density,
                np.zeros_like(time_array) + np.mean(lat_data),
                np.zeros_like(time_array) + np.mean(lon_data), height_array, jd_ref, \
                velocities_model, decelerations_model)

            ###

            # Plot Modelled height vs. dynamic mass
            plt.plot(dyn_mass_model*1000, height_array/1000, color=colors_frags[frag], zorder=3, \
                linewidth=0.75, linestyle='--', \
                label='Frag {:d} initial dyn mass = {:.1e} g'.format(frag_info.frag_dict[frag], \
                    1000*dyn_mass_model[0]))

        # Plot reference time
        plt.title('Reference time: ' + str(jd2Date(jd_ref, dt_obj=True)) \
            + ', $\\rho_m = ${:d} $kg/m^3$'.format(frag_info.bulk_density))

        plt.xlabel('Dynamic mass (g)')
        plt.ylabel('Height (km)')

        plt.ylim([ht_min / 1000, ht_max / 1000])

        # Remove repeating labels and plot the legend
        handles, labels = plt.gca().get_legend_handles_labels()
        by_label = OrderedDict(zip(labels, handles))
        plt.legend(by_label.values(), by_label.keys())

        plt.grid(color='0.9')

        # Create the label for seconds
        ax2 = plt.gca().twinx()
        ax2.set_ylim([time_max, time_min])
        ax2.set_ylabel('Time (s)')

        plt.savefig(os.path.join(dir_path, file_name_prefix \
            + '_fragments_dyn_mass_site_{:s}.png'.format(str(site_no))), dpi=300)

        plt.show()

    # Plot the light curve if the METAL .met file was given
    if (metal_mags is not None):

        # Make sure there are lightcurves in the data
        if len(metal_mags):

            lc_min = np.inf
            lc_max = -np.inf

            # Plot the lightcurves
            for site_entry in metal_mags:

                site_id, time, mags = site_entry

                # Track the minimum and maximum magnitude
                lc_min = np.min([lc_min, np.min(mags)])
                lc_max = np.max([lc_max, np.max(mags)])

                plt.plot(time,
                         mags,
                         marker='+',
                         label='Site: ' + str(site_id),
                         zorder=4,
                         linewidth=1)

            # Plot times of fragmentation
            for frag_dt, fragments_list in fragmentations_datetime:

                # Plot the lines of fragmentation
                y_arr = np.linspace(lc_min, lc_max, 10)
                x_arr = [frag_dt] * len(y_arr)

                plt.plot(x_arr, y_arr, linestyle='--', zorder=4, \
                    label='Fragmentation: ' + ",".join(fragments_list))

            plt.xlabel('Time (UTC)')
            plt.ylabel('Absolute magnitude (@100km)')

            plt.grid()

            plt.gca().invert_yaxis()

            plt.legend()

            ### Format the X axis datetimes
            import matplotlib

            def formatDT(x, pos=None):

                x = matplotlib.dates.num2date(x)

                # Add date to the first tick
                if pos == 0:
                    fmt = '%D %H:%M:%S.%f'
                else:
                    fmt = '%H:%M:%S.%f'

                label = x.strftime(fmt)[:-3]
                label = label.rstrip("0")
                label = label.rstrip(".")

                return label

            from matplotlib.ticker import FuncFormatter

            plt.gca().xaxis.set_major_formatter(FuncFormatter(formatDT))
            plt.gca().xaxis.set_minor_formatter(FuncFormatter(formatDT))

            ###

            plt.tight_layout()

            # Save the figure
            plt.savefig(os.path.join(dir_path, file_name_prefix + '_fragments_light_curve_comparison.png'), \
                dpi=300)

            plt.show()

    # Save the computed values to file
    with open(
            os.path.join(dir_path, file_name_prefix +
                         "_fragments_dyn_pressure_info.txt"), 'w') as f:

        # Site, Reference JD, Relative time, Fragment ID, Height, Dyn pressure, Dyn pressure lower \
        #   bound, Dyn pressure upper bound

        # Write the header
        f.write(
            "# Site,               Ref JD,  Rel time, Frag ID, Ht (km),  DP (kPa),   DP low,  DP high\n"
        )

        # Write computed values for every fragment
        for entry in computed_values:
            f.write(
                " {:>5s}, {:20.12f}, {:+8.6f}, {:7d}, {:7.3f}, {:9.2f}, {:8.2f}, {:8.2f}\n"
                .format(*entry))