Ejemplo n.º 1
0
 def forward(self, net, batched_inputs):
     del batched_inputs
     cls_net = wnnl.non_local_blockv1(net,
                                      scope=f"NonLocalROIHeadsHook_cls",
                                      normalizer_fn=wnnl.evo_norm_s0,
                                      activation_fn=None,
                                      weighed_sum=False)
     reg_net = wnnl.non_local_blockv1(net,
                                      scope=f"NonLocalROIHeadsHook_reg",
                                      normalizer_fn=wnnl.evo_norm_s0,
                                      activation_fn=None,
                                      weighed_sum=False)
     return cls_net, reg_net
Ejemplo n.º 2
0
 def forward(self, net, batched_inputs, reuse=None):
     del batched_inputs
     net = wnnl.non_local_blockv1(net,
                                  scope=f"NonLocalROIHeadsHook",
                                  normalizer_fn=wnnl.evo_norm_s0,
                                  activation_fn=None,
                                  weighed_sum=False)
     return net
Ejemplo n.º 3
0
    def forward(self, features, batched_inputs):
        normalizer_fn, normalizer_params = odt.get_norm(
            "evo_norm_s0", is_training=self.is_training)
        res = OrderedDict()
        with tf.variable_scope("BalanceNonLocalBackboneHook"):
            del batched_inputs
            ref_index = 1
            end_points = list(features.items())
            k0, v0 = end_points[ref_index]
            mfeatures = []
            with tf.name_scope("fusion"):
                shape0 = wmlt.combined_static_and_dynamic_shape(v0)
                for i, (k, v) in enumerate(end_points):
                    if i == ref_index:
                        net = v
                    else:
                        net = tf.image.resize_bilinear(v,
                                                       shape0[1:3],
                                                       name=f"resize{i}")
                    mfeatures.append(net)
                net = tf.add_n(mfeatures) / float(len(mfeatures))
                net = slim.conv2d(net,
                                  net.get_shape().as_list()[-1], [3, 3],
                                  activation_fn=None,
                                  normalizer_fn=normalizer_fn,
                                  normalizer_params=normalizer_params,
                                  scope=f"smooth")
            for i, (k, v) in enumerate(end_points):
                with tf.variable_scope(f"merge{i}"):
                    shape = wmlt.combined_static_and_dynamic_shape(v)
                    v0 = tf.image.resize_bilinear(net, shape[1:3])
                    net = v + v0
                    if i > 0:
                        net = wnnl.non_local_blockv1(
                            net,
                            inner_dims_multiplier=[1, 1, 1],
                            normalizer_fn=normalizer_fn,
                            normalizer_params=normalizer_params,
                            activation_fn=None,
                            weighed_sum=False)
                    res[k] = net

            return res
Ejemplo n.º 4
0
 def forward(self, x, batched_inputs, reuse=None):
     del batched_inputs
     if isinstance(x, (list, tuple)) and len(x) == 2:
         iou_x = wnnl.non_local_blockv3(x[0],
                                        x[1],
                                        x[1],
                                        inner_dims_multiplier=[1, 1, 1],
                                        scope=f"NonLocalROIHeadsHook_iou",
                                        normalizer_fn=wnnl.evo_norm_s0,
                                        activation_fn=None,
                                        weighed_sum=False,
                                        skip_connect=False)
         return x[0], x[0], iou_x
     else:
         iou_x = wnnl.non_local_blockv1(x,
                                        scope=f"NonLocalROIHeadsHook_iou",
                                        normalizer_fn=wnnl.evo_norm_s0,
                                        activation_fn=None,
                                        weighed_sum=False)
         return x, x, iou_x
Ejemplo n.º 5
0
 def forward(self, features, batched_inputs):
     del batched_inputs
     res = OrderedDict()
     normalizer_fn, normalizer_params = odt.get_norm(
         "evo_norm_s0", is_training=self.is_training)
     with tf.variable_scope("NonLocalBackboneHook"):
         for k, v in features.items():
             if k[0] not in ["C", "P"]:
                 continue
             level = int(k[1:])
             if level <= 3:
                 res[k] = v
                 continue
             res[k] = wnnl.non_local_blockv1(
                 v,
                 inner_dims_multiplier=[1, 1, 1],
                 normalizer_fn=normalizer_fn,
                 normalizer_params=normalizer_params,
                 activation_fn=None,
                 weighed_sum=False)
         return res