Ejemplo n.º 1
0
def test_reload_eigenworms_file(tmp_path):
    eigenworms_matrix = load_eigenworms_matrix(_EIGENWORMS_FILE_PATH)

    new_file_path = tmp_path / "eigenworms.csv"
    np.savetxt(new_file_path, eigenworms_matrix, delimiter=",")

    eigenworms_matrix_reloaded = load_eigenworms_matrix(new_file_path)

    assert type(eigenworms_matrix_reloaded) == type(eigenworms_matrix)
    assert eigenworms_matrix_reloaded.shape == eigenworms_matrix.shape
    assert eigenworms_matrix_reloaded.dtype == eigenworms_matrix.dtype
    assert np.allclose(eigenworms_matrix_reloaded, eigenworms_matrix)
Ejemplo n.º 2
0
def test_theta_to_modes():
    eigenworms_matrix = load_eigenworms_matrix(_EIGENWORMS_FILE_PATH)

    dims = eigenworms_matrix.shape[1]

    input_outputs = [
        (np.full(dims, np.nan), np.full(dims, np.nan)),
        (np.zeros(dims, dtype=float), np.zeros(dims, dtype=float)),
        (np.ones(dims, dtype=float), np.zeros(dims, dtype=float)),
        (eigenworms_matrix[:,
                           0], np.array([1] + [0] * (dims - 1)).astype(float)),
        (eigenworms_matrix[:, 1] * 2,
         np.array([0, 2] + [0] * (dims - 2)).astype(float)),
    ]

    for input, expected_output in input_outputs:
        output = theta_to_modes(input, eigenworms_matrix)
        assert np.allclose(output, expected_output, atol=1e-3, equal_nan=True)
Ejemplo n.º 3
0
def convert_to_modes(theta_path):

    thetas = np.loadtxt(theta_path)

    eigenworms_matrix_path = "EigenWorms.csv"
    if not os.path.isfile(eigenworms_matrix_path):
        urllib.request.urlretrieve(
            "https://raw.githubusercontent.com/iteal/wormpose/master/extras/EigenWorms.csv",
            filename="EigenWorms.csv")

    eigenworms_matrix = load_eigenworms_matrix(eigenworms_matrix_path)

    all_modes = []
    for t in thetas:
        modes = theta_to_modes(t, eigenworms_matrix)
        all_modes.append(modes)

    return np.array(all_modes)
Ejemplo n.º 4
0
def test_modes_to_theta():
    eigenworms_matrix = load_eigenworms_matrix(_EIGENWORMS_FILE_PATH)

    dims = eigenworms_matrix.shape[1]

    input_outputs = [
        (np.full(dims, np.nan), np.full(dims, np.nan)),
        (np.zeros(dims, dtype=float), np.zeros(dims, dtype=float)),
        (np.array([1] + [0] * (dims - 1)).astype(float), eigenworms_matrix[:,
                                                                           0]),
        (np.array([0] * (dims - 1) + [-10]).astype(float),
         eigenworms_matrix[:, -1] * -10),
        (np.array([3] + [0] * (dims - 1)).astype(float),
         eigenworms_matrix[:, 0] * 3),
    ]

    for input, expected_output in input_outputs:
        output = modes_to_theta(input, eigenworms_matrix)
        assert np.allclose(output, expected_output, atol=1e-3, equal_nan=True)
Ejemplo n.º 5
0
def evaluate(dataset_path: str, **kwargs):
    """
    Evaluate a trained model by predicting synthetic data and recording the image similarity

    :param dataset_path: Root path of the dataset containing videos of worm
    """
    args = _parse_arguments(dataset_path, kwargs)

    mp.set_start_method("spawn", force=True)

    random.seed(args.random_seed)
    np.random.seed(args.random_seed)

    results_dir = os.path.join(args.experiment_dir, "evaluation")
    os.makedirs(results_dir, exist_ok=True)

    config = load_config(args.config)
    eigenworms_matrix = load_eigenworms_matrix(args.eigenworms_matrix_path)

    dataset = load_dataset(
        dataset_loader=config.dataset_loader,
        dataset_path=dataset_path,
        selected_video_names=args.video_names,
        resize_options=ResizeOptions(resize_factor=config.resize_factor),
        **{WORM_IS_LIGHTER: config.worm_is_lighter},
    )

    pkl_filenames = _generate_synthetic_data(
        dataset,
        args.num_process,
        args.num_samples,
        args.postures_generation,
        args.temp_dir,
        args.random_seed,
    )

    keras_model = tf.keras.models.load_model(args.model_path, compile=False)

    tf_dataset = tf.data.Dataset.from_generator(
        partial(_eval_data_gen, pkl_filenames),
        tf.float32,
        tf.TensorShape(dataset.image_shape + (1, )),
    ).batch(args.batch_size)

    network_predictions = keras_model.predict(tf_dataset)[:args.num_samples]
    shuffled_results = ShuffledResults(random_theta=network_predictions)

    ResultsScoring(
        frame_preprocessing=dataset.frame_preprocessing,
        num_process=args.num_process,
        temp_dir=args.temp_dir,
        image_shape=dataset.image_shape,
    )(
        results=shuffled_results,
        scoring_data_manager=_ScoringDataManager(pkl_filenames),
    )
    # Keep the maximum score between the two head/tail options for this evaluation
    image_scores = np.max(shuffled_results.scores, axis=1)

    # Now calculate the angle error and mode error
    angle_error = []
    modes_error = []
    theta_predictions = []
    _, theta_labels = _load_templates(pkl_filenames)
    for theta_label, theta_results in zip(theta_labels,
                                          shuffled_results.theta):
        dists = [
            angle_distance(theta_result, theta_label)
            for theta_result in theta_results
        ]
        closest_index = int(np.argmin(dists))
        closest_theta = theta_results[closest_index]
        theta_predictions.append(closest_theta)
        angle_error.append(dists[closest_index])
        if eigenworms_matrix is not None:
            modes_label = theta_to_modes(theta_label, eigenworms_matrix)
            modes_prediction = theta_to_modes(closest_theta, eigenworms_matrix)
            mode_error = np.abs(modes_label - modes_prediction)
            modes_error.append(mode_error)

    np.savetxt(os.path.join(results_dir, "image_score.txt"), image_scores)
    np.savetxt(os.path.join(results_dir, "angle_error.txt"), angle_error)
    np.savetxt(os.path.join(results_dir, "theta_labels.txt"), theta_labels)
    np.savetxt(os.path.join(results_dir, "theta_predictions.txt"),
               theta_predictions)
    if eigenworms_matrix is not None:
        np.savetxt(os.path.join(results_dir, "modes_error.txt"), modes_error)

    logger.info(
        f"Evaluated model with synthetic data,"
        f" average image similarity: {np.mean(image_scores):.4f},"
        f" average angle error (degrees): {np.rad2deg(np.mean(angle_error)):.2f}"
    )
Ejemplo n.º 6
0
def post_process(dataset_path: str, **kwargs):
    """
    Process the raw network results with interpolation and smoothing

    :param dataset_path: Root path of the dataset containing videos of worm
    """
    args = _parse_arguments(dataset_path, kwargs)

    results_root_dir = os.path.join(args.experiment_dir,
                                    default_paths.RESULTS_DIR)

    eigenworms_matrix = load_eigenworms_matrix(args.eigenworms_matrix_path)

    config = load_config(args.config)

    dataset = load_dataset(config.dataset_loader, dataset_path)

    spline_interpolation = _SplineInterpolation()

    results_files = list(
        sorted(glob.glob(os.path.join(results_root_dir, "*",
                                      RESULTS_FILENAME))))
    if len(results_files) == 0:
        raise FileNotFoundError("No results file to analyze was found")

    for results_file in results_files:
        video_name = os.path.basename(os.path.dirname(results_file))

        with h5py.File(results_file, "r") as results_f:

            try:
                results_raw = BaseResults(
                    theta=results_f["resolved"]["theta"][:],
                    skeletons=results_f["resolved"]["skeletons"][:],
                    scores=results_f["resolved"]["scores"][:],
                )
            except Exception:
                logger.error(f"Couldn't read results in file {results_file}.")
                continue

            results_orig = OriginalResults(
                theta=results_f["original"]["theta"][:],
                skeletons=results_f["original"]["skeletons"][:])

            features = dataset.features_dataset[video_name]

            missing_values = np.any(np.isnan(results_raw.theta), axis=1)
            if missing_values.sum() == len(results_raw.theta):
                logger.warning(
                    f"No valid result was found, stopping postprocessing for {video_name}"
                )
                continue

            segments_boundaries = _get_valid_segments(
                is_valid_series=~missing_values,
                max_gap_size=args.max_gap_size,
                min_segment_size=args.min_segment_size,
            )
            # interpolate and smooth in angles space
            thetas_interp = spline_interpolation.interpolate_tseries(
                results_raw.theta, segments_boundaries, args.std_fraction)
            results_interp = _calculate_skeleton(thetas_interp, args, dataset,
                                                 video_name)

            thetas_smooth = _smooth_tseries(
                thetas_interp,
                args.smoothing_window,
                args.poly_order,
                segments_boundaries,
            )
            results_smooth = _calculate_skeleton(thetas_smooth, args, dataset,
                                                 video_name)

            flipped = False

            if features.ventral_side == "clockwise":
                results_orig.theta = _dorsal_ventral_flip_theta(
                    results_orig.theta)
                results_raw.theta = _dorsal_ventral_flip_theta(
                    results_raw.theta)
                results_interp.theta = _dorsal_ventral_flip_theta(
                    results_interp.theta)
                results_smooth.theta = _dorsal_ventral_flip_theta(
                    results_smooth.theta)
                flipped = True

            if eigenworms_matrix is not None:
                setattr(
                    results_orig, "modes",
                    _thetas_to_modes(results_orig.theta, eigenworms_matrix))
                setattr(results_raw, "modes",
                        _thetas_to_modes(results_raw.theta, eigenworms_matrix))
                setattr(
                    results_interp, "modes",
                    _thetas_to_modes(results_interp.theta, eigenworms_matrix))
                setattr(
                    results_smooth, "modes",
                    _thetas_to_modes(results_smooth.theta, eigenworms_matrix))

        # save results
        results_saver = ResultsSaver(
            temp_dir=args.temp_dir,
            results_root_dir=results_root_dir,
            results_filename=POSTPROCESSED_RESULTS_FILENAME)

        metadata = {
            "max_gap_size": args.max_gap_size,
            "min_segment_size": args.min_segment_size,
            "smoothing_window": args.smoothing_window,
            "poly_order": args.poly_order,
            "std_fraction": args.std_fraction,
            "dorsal_ventral_flip": flipped,
        }

        results_saver.save(
            results={
                "orig": results_orig,
                "raw": results_raw,
                "interp": results_interp,
                "smooth": results_smooth
            },
            metadata=metadata,
            video_name=video_name,
        )
        logger.info(
            f"Post-processed worm: {video_name} {'(flipped dorsal-ventral)' if flipped else ''}"
        )
Ejemplo n.º 7
0
def test_load_eigenworms_file():
    eigenworms_matrix = load_eigenworms_matrix(_EIGENWORMS_FILE_PATH)

    assert type(eigenworms_matrix) is np.ndarray
    assert eigenworms_matrix.shape[0] == eigenworms_matrix.shape[1]
    assert eigenworms_matrix.dtype == float
Ejemplo n.º 8
0
def test_load_invalid_path():
    with pytest.raises(OSError):
        load_eigenworms_matrix("invalid_path")
Ejemplo n.º 9
0
def test_load_none():
    eigenworms_matrix = load_eigenworms_matrix(None)
    assert eigenworms_matrix is None
def export_as_images(dataset_loader: str,
                     dataset_path: str,
                     video_name: str,
                     results_path: str,
                     eigenworms_matrix_path: str,
                     out_dir: str,
                     num_process,
                     temp_dir,
                     image_size=128):
    if out_dir is None:
        out_dir = "out"
    if num_process is None:
        num_process = os.cpu_count()
    if temp_dir is None:
        temp_dir = tempfile.gettempdir()
    temp_dir = tempfile.mkdtemp(dir=temp_dir)

    out_dir = os.path.join(out_dir, video_name)
    if os.path.exists(out_dir):
        shutil.rmtree(out_dir)
    os.makedirs(out_dir, exist_ok=True)

    eigenworms_matrix = load_eigenworms_matrix(eigenworms_matrix_path)

    dataset = load_dataset(dataset_loader=dataset_loader,
                           dataset_path=dataset_path,
                           selected_video_names=[video_name],
                           resize_options=ResizeOptions(image_size=image_size))
    features = dataset.features_dataset[video_name]
    scoring_data_manager = ScoringDataManager(
        video_name=video_name,
        frames_dataset=dataset.frames_dataset,
        features=features,
    )
    results_scoring = ResultsScoring(
        frame_preprocessing=dataset.frame_preprocessing,
        num_process=num_process,
        temp_dir=temp_dir,
        image_shape=(image_size, image_size),
    )

    results = np.loadtxt(results_path)

    modes = results[:, :5]
    theta_mean = results[:, 5]

    # convert RCS results to theta
    thetas = []
    for m, t_m in zip(modes, theta_mean):
        theta = modes_to_theta(m, eigenworms_matrix) + t_m
        thetas.append(theta)
    thetas = np.array(thetas)

    # calculate score and associated skeleton
    results_to_score = BaseResults(theta=thetas)
    results_scoring(results_to_score, scoring_data_manager)

    skeletons = results_to_score.skeletons[:, 0]
    scores = results_to_score.scores[:, 0]

    # draw skeleton on top of image
    color = (0, 255, 0)
    image_filename_format = "frame_{{:0{}d}}_score_{{:.2f}}.png".format(
        len(str(skeletons.shape[0])), len(str(len(scores))))

    with dataset.frames_dataset.open(video_name) as frames:
        for index, (frame, skel,
                    score) in enumerate(zip(frames, skeletons, scores)):
            frame_color = cv2.cvtColor(frame, cv2.COLOR_GRAY2BGR)

            draw_skeleton(frame_color, skel, color, color)

            cv2.imwrite(
                os.path.join(out_dir,
                             image_filename_format.format(index, score)),
                frame_color)

    # cleanup
    shutil.rmtree(temp_dir)
import numpy as np
import matplotlib.pyplot as plt

thetas_onno = np.load("data/AQ2934_theta_onno.npy")
thetas_wp = np.load("data/AQ2934_theta_wp.npy")

from wormpose.pose.eigenworms import load_eigenworms_matrix, theta_to_modes, modes_to_theta
eigenworms_matrix = load_eigenworms_matrix("EigenWorms.csv")

from wormpose.pose.centerline import flip_theta
from wormpose.pose.distance_metrics import angle_distance


def convert(theta):
    theta_flipped = flip_theta(theta)
    modes = theta_to_modes(theta, eigenworms_matrix)[:4]
    modes_flipped = theta_to_modes(theta_flipped, eigenworms_matrix)[:4]
    return (modes, modes_flipped), (theta, theta_flipped)


def mode_dist(m1, m2):
    return np.abs(m1 - m2)


MODE_THRESHOLD = 12

all_mode_errors = []

for index, (theta_wp, theta_onno) in enumerate(zip(thetas_wp, thetas_onno)):

    m_wp, t_wp = convert(theta_wp)