data = np.array(data, dtype=float) z = np.delete(z, delete_missing, axis=0) # normalize data data = (data - data.mean(axis=0))/data.std(axis=0) G = eclust.kernel_matrix(data, rho) #G = energy.eclust.kernel_matrix(data, rho_gauss) #G = energy.eclust.kernel_matrix(data, rho_exp) r = [] r.append(wrapper.kmeans(6, data, run_times=10)) r.append(wrapper.gmm(6, data, run_times=10)) r.append(wrapper.spectral_clustering(6, data, G, run_times=10)) r.append(wrapper.spectral(6, data, G, run_times=10)) #r.append(wrapper.kernel_kmeans(6, data, G, run_times=10, ini='random')) r.append(wrapper.kernel_kmeans(6, data, G, run_times=10, ini='k-means++')) #r.append(wrapper.kernel_kmeans(6, data, G, run_times=10, ini='spectral')) #r.append(wrapper.kernel_kgroups(6,data,G,run_times=10, ini='random')) r.append(wrapper.kernel_kgroups(6,data,G,run_times=10, ini='k-means++')) #r.append(wrapper.kernel_kgroups(6,data,G,run_times=10, ini='spectral')) t = PrettyTable(['Algorithm', 'Accuracy', 'A-Rand']) algos = ['kmeans', 'GMM', 'spectral clustering', 'spectral', 'kernel k-means', 'kernel k-groups'] for algo, zh in zip(algos, r): t.add_row([algo,
sigma = np.sqrt(sigma2) rho_exp = lambda x, y: 2-2*np.exp(-np.linalg.norm(x-y)/(2*sigma)) rho_gauss = lambda x, y: 2-2*np.exp(-np.linalg.norm(x-y)**2/(2*(sigma)**2)) G = eclust.kernel_matrix(data, rho) #G = eclust.kernel_matrix(data, rho_gauss) #G = eclust.kernel_matrix(data, rho_exp) k = 3 r = [] r.append(wrapper.kmeans(k, data, run_times=5)) r.append(wrapper.gmm(k, data, run_times=5)) r.append(wrapper.spectral_clustering(k, data, G, run_times=5)) r.append(wrapper.spectral(k, data, G, run_times=5)) r.append(wrapper.kernel_kmeans(k, data, G, run_times=5, ini='random')) #r.append(wrapper.kernel_kmeans(k, data, G, run_times=5, ini='k-means++')) #r.append(wrapper.kernel_kmeans(k, data, G, run_times=5, ini='spectral')) r.append(wrapper.kernel_kgroups(k,data,G,run_times=5, ini='random')) #r.append(wrapper.kernel_kgroups(k,data,G,run_times=5, ini='k-means++')) #r.append(wrapper.kernel_kgroups(k,data,G,run_times=5, ini='spectral')) t = PrettyTable(['Algorithm', 'Accuracy', 'A-Rand']) algos = ['kmeans', 'GMM', 'spectral clustering', 'spectral', 'kernel k-means', 'kernel k-groups'] for algo, zh in zip(algos, r): t.add_row([algo, metric.accuracy(z, zh), sklearn.metrics.adjusted_rand_score(z, zh)
data = np.array(data, dtype=float) z = np.delete(z, delete_missing, axis=0) # normalize data data = (data - data.mean(axis=0)) / data.std(axis=0) G = eclust.kernel_matrix(data, rho) #G = energy.eclust.kernel_matrix(data, rho_gauss) #G = energy.eclust.kernel_matrix(data, rho_exp) r = [] r.append(wrapper.kmeans(6, data, run_times=10)) r.append(wrapper.gmm(6, data, run_times=10)) r.append(wrapper.spectral_clustering(6, data, G, run_times=10)) r.append(wrapper.spectral(6, data, G, run_times=10)) #r.append(wrapper.kernel_kmeans(6, data, G, run_times=10, ini='random')) r.append(wrapper.kernel_kmeans(6, data, G, run_times=10, ini='k-means++')) #r.append(wrapper.kernel_kmeans(6, data, G, run_times=10, ini='spectral')) #r.append(wrapper.kernel_kgroups(6,data,G,run_times=10, ini='random')) r.append(wrapper.kernel_kgroups(6, data, G, run_times=10, ini='k-means++')) #r.append(wrapper.kernel_kgroups(6,data,G,run_times=10, ini='spectral')) t = PrettyTable(['Algorithm', 'Accuracy', 'A-Rand']) algos = [ 'kmeans', 'GMM', 'spectral clustering', 'spectral', 'kernel k-means', 'kernel k-groups' ]