Ejemplo n.º 1
0
 def vsum(ov, mv):
     # Observed vis minus the sum of all predictions
     verr = copy_visibility(ov)
     for m in mv:
         verr.data['vis'] -= m.data['vis']
     # Now add back each model in turn
     result = list()
     for m in mv:
         vr = copy_visibility(verr)
         vr.data['vis'] += m.data['vis']
         result.append(vr)
     assert len(result) == len(mv)
     return result
Ejemplo n.º 2
0
 def zero(vis):
     if vis is not None:
         zerovis = copy_visibility(vis)
         zerovis.data['vis'][...] = 0.0
         return zerovis
     else:
         return None
    def ft_cal_sm(ov, sm):
        assert isinstance(ov, Visibility), ov
        assert isinstance(sm, SkyModel), sm
        v = copy_visibility(ov)

        v.data['vis'][...] = 0.0 + 0.0j

        if len(sm.components) > 0:

            if isinstance(sm.mask, Image):
                comps = copy_skycomponent(sm.components)
                comps = apply_beam_to_skycomponent(comps, sm.mask)
                v = predict_skycomponent_visibility(v, comps)
            else:
                v = predict_skycomponent_visibility(v, sm.components)

        if isinstance(sm.image, Image):
            if numpy.max(numpy.abs(sm.image.data)) > 0.0:
                if isinstance(sm.mask, Image):
                    model = copy_image(sm.image)
                    model.data *= sm.mask.data
                else:
                    model = sm.image
                v = predict_list_serial_workflow([v], [model],
                                                 context=context,
                                                 vis_slices=vis_slices,
                                                 facets=facets,
                                                 gcfcf=gcfcf,
                                                 **kwargs)[0]

        if docal and isinstance(sm.gaintable, GainTable):
            bv = convert_visibility_to_blockvisibility(v)
            bv = apply_gaintable(bv, sm.gaintable, inverse=True)
            v = convert_blockvisibility_to_visibility(bv)
        return v
Ejemplo n.º 4
0
 def subtract_vis(vis, model_vis):
     if vis is not None and model_vis is not None:
         assert vis.vis.shape == model_vis.vis.shape
         subvis = copy_visibility(vis)
         subvis.data['vis'][...] -= model_vis.data['vis'][...]
         return subvis
     else:
         return None
 def actualSetUp(self, freqwin=1, block=True, dopol=False, zerow=False):
     
     self.npixel = 1024
     self.low = create_named_configuration('LOWBD2', rmax=550.0)
     self.freqwin = freqwin
     self.blockvis_list = list()
     self.ntimes = 5
     self.cellsize = 0.0005
     # Choose the interval so that the maximum change in w is smallish
     integration_time = numpy.pi * (24 / (12 * 60))
     self.times = numpy.linspace(-integration_time * (self.ntimes // 2), integration_time * (self.ntimes // 2),
                                 self.ntimes)
     
     if freqwin > 1:
         self.frequency = numpy.linspace(0.8e8, 1.2e8, self.freqwin)
         self.channelwidth = numpy.array(freqwin * [self.frequency[1] - self.frequency[0]])
     else:
         self.frequency = numpy.array([1.0e8])
         self.channelwidth = numpy.array([4e7])
     
     if dopol:
         self.vis_pol = PolarisationFrame('linear')
         self.image_pol = PolarisationFrame('stokesIQUV')
         f = numpy.array([100.0, 20.0, -10.0, 1.0])
     else:
         self.vis_pol = PolarisationFrame('stokesI')
         self.image_pol = PolarisationFrame('stokesI')
         f = numpy.array([100.0])
     
     self.phasecentre = SkyCoord(ra=+0.0 * u.deg, dec=-40.0 * u.deg, frame='icrs', equinox='J2000')
     self.blockvis_list = [arlexecute.execute(ingest_unittest_visibility)(self.low,
                                                                          [self.frequency[freqwin]],
                                                                          [self.channelwidth[freqwin]],
                                                                          self.times,
                                                                          self.vis_pol,
                                                                          self.phasecentre, block=block,
                                                                          zerow=zerow)
                           for freqwin, _ in enumerate(self.frequency)]
     self.blockvis_list = arlexecute.compute(self.blockvis_list, sync=True)
     self.vis_list = [arlexecute.execute(convert_blockvisibility_to_visibility)(bv) for bv in self.blockvis_list]
     self.vis_list = arlexecute.compute(self.vis_list, sync=True)
     
     self.skymodel_list = [arlexecute.execute(create_low_test_skymodel_from_gleam)
                           (npixel=self.npixel, cellsize=self.cellsize, frequency=[self.frequency[f]],
                            phasecentre=self.phasecentre,
                            polarisation_frame=PolarisationFrame("stokesI"),
                            flux_limit=0.6,
                            flux_threshold=1.0,
                            flux_max=5.0) for f, freq in enumerate(self.frequency)]
     
     self.skymodel_list = arlexecute.compute(self.skymodel_list, sync=True)
     assert isinstance(self.skymodel_list[0].image, Image), self.skymodel_list[0].image
     assert isinstance(self.skymodel_list[0].components[0], Skycomponent), self.skymodel_list[0].components[0]
     assert len(self.skymodel_list[0].components) == 19, len(self.skymodel_list[0].components)
     self.skymodel_list = expand_skymodel_by_skycomponents(self.skymodel_list[0])
     assert len(self.skymodel_list) == 20, len(self.skymodel_list)
     assert numpy.max(numpy.abs(self.skymodel_list[-1].image.data)) > 0.0, "Image is empty"
     self.vis_list = [copy_visibility(self.vis_list[0], zero=True) for i, _ in enumerate(self.skymodel_list)]
Ejemplo n.º 6
0
    def ft_ift_sm(ov, sm, g):
        assert isinstance(ov, Visibility) or isinstance(ov,
                                                        BlockVisibility), ov
        assert isinstance(sm, SkyModel), sm
        if g is not None:
            assert len(g) == 2, g
            assert isinstance(g[0], Image), g[0]
            assert isinstance(g[1], ConvolutionFunction), g[1]

        v = copy_visibility(ov)

        v.data['vis'][...] = 0.0 + 0.0j

        if len(sm.components) > 0:

            if isinstance(sm.mask, Image):
                comps = copy_skycomponent(sm.components)
                comps = apply_beam_to_skycomponent(comps, sm.mask)
                v = predict_skycomponent_visibility(v, comps)
            else:
                v = predict_skycomponent_visibility(v, sm.components)

        if isinstance(sm.image, Image):
            if numpy.max(numpy.abs(sm.image.data)) > 0.0:
                if isinstance(sm.mask, Image):
                    model = copy_image(sm.image)
                    model.data *= sm.mask.data
                else:
                    model = sm.image
                v = predict_list_serial_workflow([v], [model],
                                                 context=context,
                                                 vis_slices=vis_slices,
                                                 facets=facets,
                                                 gcfcf=[g],
                                                 **kwargs)[0]

        assert isinstance(sm.image, Image), sm.image

        result = invert_list_serial_workflow([v], [sm.image],
                                             context=context,
                                             vis_slices=vis_slices,
                                             facets=facets,
                                             gcfcf=[g],
                                             **kwargs)[0]
        if isinstance(sm.mask, Image):
            result[0].data *= sm.mask.data
        return result
Ejemplo n.º 7
0
    def ft_cal_sm(obv, sm):
        assert isinstance(obv, BlockVisibility), obv
        bv = copy_visibility(obv)

        bv.data['vis'][...] = 0.0 + 0.0j

        assert len(sm.components) > 0

        if isinstance(sm.mask, Image):
            comps = copy_skycomponent(sm.components)
            comps = apply_beam_to_skycomponent(comps, sm.mask)
            bv = predict_skycomponent_visibility(bv, comps)
        else:
            bv = predict_skycomponent_visibility(bv, sm.components)

        if docal and isinstance(sm.gaintable, GainTable):
            bv = apply_gaintable(bv, sm.gaintable, inverse=True)

        return bv
    def ft_ift_sm(ov, sm):
        assert isinstance(ov, Visibility), ov
        v = copy_visibility(ov)

        v.data['vis'][...] = 0.0 + 0.0j

        if len(sm.components) > 0:

            if isinstance(sm.mask, Image):
                comps = copy_skycomponent(sm.components)
                comps = apply_beam_to_skycomponent(comps, sm.mask)
                v = predict_skycomponent_visibility(v, comps)
            else:
                v = predict_skycomponent_visibility(v, sm.components)

        if isinstance(sm.image, Image):
            if numpy.max(numpy.abs(sm.image.data)) > 0.0:
                if isinstance(sm.mask, Image):
                    model = copy_image(sm.image)
                    model.data *= sm.mask.data
                else:
                    model = sm.image
                v = predict_list_serial_workflow([v], [model],
                                                 context=context,
                                                 vis_slices=vis_slices,
                                                 facets=facets,
                                                 gcfcf=gcfcf,
                                                 **kwargs)[0]

        assert isinstance(sm.image, Image), sm.image

        result = invert_list_serial_workflow([v], [sm.image],
                                             context=context,
                                             vis_slices=vis_slices,
                                             facets=facets,
                                             gcfcf=gcfcf,
                                             **kwargs)[0]
        if isinstance(sm.mask, Image):
            result[0].data *= sm.mask.data
        return result
Ejemplo n.º 9
0
    def actualSetUp(self,
                    nfreqwin=3,
                    dospectral=True,
                    dopol=False,
                    amp_errors=None,
                    phase_errors=None,
                    zerow=True):

        if amp_errors is None:
            amp_errors = {'T': 0.0, 'G': 0.1}
        if phase_errors is None:
            phase_errors = {'T': 1.0, 'G': 0.0}

        self.npixel = 512
        self.low = create_named_configuration('LOWBD2', rmax=750.0)
        self.freqwin = nfreqwin
        self.vis_list = list()
        self.ntimes = 1
        self.times = numpy.linspace(-3.0, +3.0, self.ntimes) * numpy.pi / 12.0
        self.frequency = numpy.linspace(0.8e8, 1.2e8, self.freqwin)

        if self.freqwin > 1:
            self.channelwidth = numpy.array(
                self.freqwin * [self.frequency[1] - self.frequency[0]])
        else:
            self.channelwidth = numpy.array([1e6])

        if dopol:
            self.vis_pol = PolarisationFrame('linear')
            self.image_pol = PolarisationFrame('stokesIQUV')
            f = numpy.array([100.0, 20.0, -10.0, 1.0])
        else:
            self.vis_pol = PolarisationFrame('stokesI')
            self.image_pol = PolarisationFrame('stokesI')
            f = numpy.array([100.0])

        if dospectral:
            flux = numpy.array(
                [f * numpy.power(freq / 1e8, -0.7) for freq in self.frequency])
        else:
            flux = numpy.array([f])

        self.phasecentre = SkyCoord(ra=+180.0 * u.deg,
                                    dec=-60.0 * u.deg,
                                    frame='icrs',
                                    equinox='J2000')
        self.blockvis_list = [
            arlexecute.execute(ingest_unittest_visibility,
                               nout=1)(self.low, [self.frequency[i]],
                                       [self.channelwidth[i]],
                                       self.times,
                                       self.vis_pol,
                                       self.phasecentre,
                                       block=True,
                                       zerow=zerow) for i in range(nfreqwin)
        ]
        self.blockvis_list = arlexecute.compute(self.blockvis_list, sync=True)

        for v in self.blockvis_list:
            v.data['vis'][...] = 1.0 + 0.0j

        self.error_blockvis_list = [
            arlexecute.execute(copy_visibility(v)) for v in self.blockvis_list
        ]
        gt = arlexecute.execute(create_gaintable_from_blockvisibility)(
            self.blockvis_list[0])
        gt = arlexecute.execute(simulate_gaintable)(gt,
                                                    phase_error=0.1,
                                                    amplitude_error=0.0,
                                                    smooth_channels=1,
                                                    leakage=0.0,
                                                    seed=180555)
        self.error_blockvis_list = [
            arlexecute.execute(apply_gaintable)(self.error_blockvis_list[i],
                                                gt)
            for i in range(self.freqwin)
        ]

        self.error_blockvis_list = arlexecute.compute(self.error_blockvis_list,
                                                      sync=True)

        assert numpy.max(
            numpy.abs(self.error_blockvis_list[0].vis -
                      self.blockvis_list[0].vis)) > 0.0
    def actualSetup(self,
                    vnchan=1,
                    doiso=True,
                    ntimes=5,
                    flux_limit=2.0,
                    zerow=True,
                    fixed=False):

        nfreqwin = vnchan
        rmax = 300.0
        npixel = 512
        cellsize = 0.001
        frequency = numpy.linspace(0.8e8, 1.2e8, nfreqwin)
        if nfreqwin > 1:
            channel_bandwidth = numpy.array(nfreqwin *
                                            [frequency[1] - frequency[0]])
        else:
            channel_bandwidth = [0.4e8]
        times = numpy.linspace(-numpy.pi / 3.0, numpy.pi / 3.0, ntimes)

        phasecentre = SkyCoord(ra=-60.0 * u.deg,
                               dec=-60.0 * u.deg,
                               frame='icrs',
                               equinox='J2000')

        lowcore = create_named_configuration('LOWBD2', rmax=rmax)

        block_vis = create_blockvisibility(
            lowcore,
            times,
            frequency=frequency,
            channel_bandwidth=channel_bandwidth,
            weight=1.0,
            phasecentre=phasecentre,
            polarisation_frame=PolarisationFrame("stokesI"),
            zerow=zerow)

        block_vis.data['uvw'][..., 2] = 0.0
        self.beam = create_image_from_visibility(
            block_vis,
            npixel=npixel,
            frequency=[numpy.average(frequency)],
            nchan=nfreqwin,
            channel_bandwidth=[numpy.sum(channel_bandwidth)],
            cellsize=cellsize,
            phasecentre=phasecentre)

        self.components = create_low_test_skycomponents_from_gleam(
            flux_limit=flux_limit,
            phasecentre=phasecentre,
            frequency=frequency,
            polarisation_frame=PolarisationFrame('stokesI'),
            radius=npixel * cellsize)
        self.beam = create_low_test_beam(self.beam)
        self.components = apply_beam_to_skycomponent(self.components,
                                                     self.beam,
                                                     flux_limit=flux_limit)

        self.vis = copy_visibility(block_vis, zero=True)
        gt = create_gaintable_from_blockvisibility(block_vis, timeslice='auto')
        for i, sc in enumerate(self.components):
            if sc.flux[0, 0] > 10:
                sc.flux[...] /= 10.0
            component_vis = copy_visibility(block_vis, zero=True)
            gt = simulate_gaintable(gt,
                                    amplitude_error=0.0,
                                    phase_error=0.1,
                                    seed=None)
            component_vis = predict_skycomponent_visibility(component_vis, sc)
            component_vis = apply_gaintable(component_vis, gt)
            self.vis.data['vis'][...] += component_vis.data['vis'][...]

        # Do an isoplanatic selfcal
        self.model_vis = copy_visibility(self.vis, zero=True)
        self.model_vis = predict_skycomponent_visibility(
            self.model_vis, self.components)
        if doiso:
            gt = solve_gaintable(self.vis,
                                 self.model_vis,
                                 phase_only=True,
                                 timeslice='auto')
            self.vis = apply_gaintable(self.vis, gt, inverse=True)

        self.model_vis = convert_blockvisibility_to_visibility(self.model_vis)
        self.model_vis, _, _ = weight_visibility(self.model_vis, self.beam)
        self.dirty_model, sumwt = invert_list_arlexecute_workflow(
            self.model_vis, self.beam, context='2d')
        export_image_to_fits(
            self.dirty_model,
            "%s/test_modelpartition-model_dirty.fits" % self.dir)

        lvis = convert_blockvisibility_to_visibility(self.vis)
        lvis, _, _ = weight_visibility(lvis, self.beam)
        dirty, sumwt = invert_list_arlexecute_workflow(lvis,
                                                       self.beam,
                                                       context='2d')
        if doiso:
            export_image_to_fits(
                dirty,
                "%s/test_modelpartition-initial-iso-residual.fits" % self.dir)
        else:
            export_image_to_fits(
                dirty, "%s/test_modelpartition-initial-noiso-residual.fits" %
                self.dir)

        self.skymodels = [
            SkyModel(components=[cm], fixed=fixed) for cm in self.components
        ]
Ejemplo n.º 11
0
 def vis_add(v1, v2):
     vout = copy_visibility(v1)
     vout.data['vis'] += v2.data['vis']
     return vout
Ejemplo n.º 12
0
def ical_list_mpi_workflow(vis_list,
                           model_imagelist,
                           context,
                           vis_slices=1,
                           facets=1,
                           gcfcf=None,
                           calibration_context='TG',
                           do_selfcal=True,
                           comm=MPI.COMM_WORLD,
                           **kwargs):
    """Create graph for ICAL pipeline

    :param vis_list:
    :param model_imagelist:
    :param context: imaging context e.g. '2d'
    :param calibration_context: Sequence of calibration steps e.g. TGB
    :param do_selfcal: Do the selfcalibration?
    :param kwargs: Parameters for functions in components
    :return:
    """
    rank = comm.Get_rank()
    size = comm.Get_size()
    assert isinstance(model_imagelist, list), model_imagelist
    log.info(
        '%d: ical_list_mpi_workflow: vis_list len %d model_imagelist len %d' %
        (rank, len(vis_list), len(model_imagelist)))
    gt_list = list()
    if gcfcf is None:
        if rank == 0:
            gcfcf = [create_pswf_convolutionfunction(model_imagelist[0])]
    gcfcf = comm.bcast(gcfcf, root=0)

    psf_imagelist = invert_list_mpi_workflow(vis_list,
                                             model_imagelist,
                                             dopsf=True,
                                             context=context,
                                             vis_slices=vis_slices,
                                             facets=facets,
                                             gcfcf=gcfcf,
                                             **kwargs)

    model_vislist = [copy_visibility(v, zero=True) for v in vis_list]

    if do_selfcal:
        cal_vis_list = [copy_visibility(v) for v in vis_list]
    else:
        cal_vis_list = vis_list

    if do_selfcal:
        # Make the predicted visibilities, selfcalibrate against it correcting the gains, then
        # form the residual visibility, then make the residual image
        predicted_model_vislist = predict_list_mpi_workflow(
            model_vislist,
            model_imagelist,
            context=context,
            vis_slices=vis_slices,
            facets=facets,
            gcfcf=gcfcf,
            **kwargs)
        recal_vis_list, gt_list = calibrate_list_mpi_workflow(
            cal_vis_list,
            predicted_model_vislist,
            calibration_context=calibration_context,
            **kwargs)
        residual_vislist = subtract_list_mpi_workflow(recal_vis_list,
                                                      predicted_model_vislist)
        residual_imagelist = invert_list_mpi_workflow(residual_vislist,
                                                      model_imagelist,
                                                      dopsf=True,
                                                      context=context,
                                                      vis_slices=vis_slices,
                                                      facets=facets,
                                                      gcfcf=gcfcf,
                                                      iteration=0,
                                                      **kwargs)
    else:
        # If we are not selfcalibrating it's much easier and we can avoid an unnecessary round of gather/scatter
        # for visibility partitioning such as timeslices and wstack.
        residual_imagelist = residual_list_mpi_workflow(cal_vis_list,
                                                        model_imagelist,
                                                        context=context,
                                                        vis_slices=vis_slices,
                                                        facets=facets,
                                                        gcfcf=gcfcf,
                                                        **kwargs)

    assert isinstance(model_imagelist, list), model_imagelist
    deconvolve_model_imagelist = deconvolve_list_mpi_workflow(
        residual_imagelist,
        psf_imagelist,
        model_imagelist,
        prefix='cycle 0',
        **kwargs)

    nmajor = get_parameter(kwargs, "nmajor", 5)
    if nmajor > 1:
        for cycle in range(nmajor):
            if do_selfcal:
                predicted_model_vislist = predict_list_mpi_workflow(
                    model_vislist,
                    deconvolve_model_imagelist,
                    context=context,
                    vis_slices=vis_slices,
                    facets=facets,
                    gcfcf=gcfcf,
                    **kwargs)
                recal_vis_list, gt_list = calibrate_list_mpi_workflow(
                    cal_vis_list,
                    predicted_model_vislist,
                    calibration_context=calibration_context,
                    iteration=cycle,
                    **kwargs)
                residual_vislist = subtract_list_mpi_workflow(
                    recal_vis_list, model_vislist)
                residual_imagelist = invert_list_mpi_workflow(
                    residual_vislist,
                    model_imagelist,
                    context=context,
                    vis_slices=vis_slices,
                    facets=facets,
                    gcfcf=gcfcf,
                    **kwargs)
            else:
                residual_imagelist = residual_list_mpi_workflow(
                    cal_vis_list,
                    deconvolve_model_imagelist,
                    context=context,
                    vis_slices=vis_slices,
                    facets=facets,
                    gcfcf=gcfcf,
                    **kwargs)

            prefix = "cycle %d" % (cycle + 1)
            deconvolve_model_imagelist = deconvolve_list_mpi_workflow(
                residual_imagelist,
                psf_imagelist,
                deconvolve_model_imagelist,
                prefix=prefix,
                **kwargs)
    residual_imagelist = residual_list_mpi_workflow(cal_vis_list,
                                                    deconvolve_model_imagelist,
                                                    context=context,
                                                    vis_slices=vis_slices,
                                                    facets=facets,
                                                    gcfcf=gcfcf,
                                                    **kwargs)
    restore_imagelist = restore_list_mpi_workflow(deconvolve_model_imagelist,
                                                  psf_imagelist,
                                                  residual_imagelist)

    return (deconvolve_model_imagelist, residual_imagelist, restore_imagelist,
            gt_list)