def gen_attribute_list(row=1):
     cell_list_to_return = []
     for attribute_obj in attribute_list:
         attribute_cell = Cell(row=row,
                               col=attribute_obj.col,
                               text=attribute_obj.name,
                               col_title=attribute_obj.name)
         function_globals.all_cells_list.append(attribute_cell)
Ejemplo n.º 2
0
 def gen_attribute_list(row=1):
     #print line_number(), column_text_list
     cell_list_to_return = []
     for attribute_obj in attribute_list:
         attribute_cell = Cell(row=row,
                               col=attribute_obj.col,
                               text=attribute_obj.name,
                               col_title=attribute_obj.name)
         all_cells_list.append(attribute_cell)
 def create_rows_of_stock_data(stock_list = stock_list):
     rows_before_stock_data = 2
     rows_list = []
     for stock in stock_list:
         stock_row = return_Row_obj_else_create(stock)
         for attribute_obj in attribute_list:
             try:
                 data = attribute_obj.function(stock)
             except: # in case it throws an attribute error
                 data = None
             data_cell = Cell(text = data) # this will be thrown out later
             setattr(stock_row, attribute_obj.name, data_cell)
    def create_avg_and_std_cells_for_attributes():
        total_rows = 0
        for cell in function_globals.all_cells_list:
            if cell.row > total_rows:
                total_rows = cell.row

        avg_row_at_the_end = total_rows + 2
        std_row = avg_row_at_the_end + 1
        for attribute_obj in attribute_list:
            for triple in function_globals.attrbute_name_avg_and_std_triple_list:
                if attribute_obj.name == triple[0]:

                    if attribute_obj.display == "2":
                        triple[1] = "%.2f" % triple[1]
                        triple[2] = "%.2f" % triple[2]
                    elif attribute_obj.display == "%":
                        try:
                            triple[1] = float(triple[1])
                            if triple[1].is_integer():
                                triple[1] = str(int(round(float(triple[1])))) + "%"
                            else:
                                triple[1] = ("%.2f" % triple[1]) + "%"
                        except:
                            triple[1] = str(triple[1]) + "%"

                        try:
                            triple[2] = float(triple[2])
                            if triple[2].is_integer():
                                triple[2] = str(int(round(float(triple[2])))) + "%"
                            else:
                                triple[2] = ("%.2f" % triple[2]) + "%"
                        except:
                            triple[2] = str(triple[2]) + "%"

                    elif attribute_obj.display == "$":
                        try:
                            triple[1] = config.locale.currency(float(triple[1]), grouping = True)
                        except Exception as e:
                            print line_number(), e
                            triple[1] = "$" + str(triple[1])

                        try:
                            triple[2] = config.locale.currency(float(triple[2]), grouping = True)
                        except Exception as e:
                            print line_number(), e
                            triple[2] = "$" + str(triple[2])

                    elif attribute_obj.display == "rnk":
                        try:
                            if float(triple[1]).is_integer():
                                triple[1] = str(int(triple[1]))
                            else:
                                triple[1] = str(triple[1])
                        except:
                            triple[1] = str(triple[1])

                        try:
                            if float(triple[2]).is_integer():
                                triple[2] = str(int(triple[2]))
                            else:
                                triple[2] = str(round(triple[2], 2))
                        except:
                            triple[2] = str(triple[2])

                    if function_globals.avg_row_cell:
                        attribute_avg_cell = Cell(text = triple[1],row = function_globals.avg_row_cell.row, col = attribute_obj.col, text_color = "red", align_right = True)
                        function_globals.all_cells_list.append(attribute_avg_cell)
                        attribute_avg_cell = Cell(text = triple[1],row = avg_row_at_the_end, col = attribute_obj.col, row_title = "Average", text_color = "red", align_right = True)
                        function_globals.all_cells_list.append(attribute_avg_cell)
                        attribute_std_cell = Cell(text = triple[2],row = std_row, col = attribute_obj.col, row_title = "Standard Dev",text_color = "red", align_right = True)
                        function_globals.all_cells_list.append(attribute_std_cell)

        score_cols_list = []
        score_display = None
        for attribute_obj in attribute_list:
            if attribute_obj.name == "Score":
                score_cols_list.append(attribute_obj.col)
                score_display = attribute_obj.display
        for col in score_cols_list:
            if function_globals.avg_row_cell:
                score_avg_cell = Cell(text = "%.2f" % function_globals.score_avg, row = function_globals.avg_row_cell.row, col = col, text_color = "red", align_right = True)
                score_avg_cell_2 = Cell(text = "%.2f" % function_globals.score_avg, row = avg_row_at_the_end, col = col, text_color = "red", align_right = True)
                score_std_cell = Cell(text = "%.2f" % function_globals.score_std, row = std_row, col = col, text_color = "red", align_right = True)
                function_globals.all_cells_list.append(score_avg_cell)
                function_globals.all_cells_list.append(score_avg_cell_2)
                function_globals.all_cells_list.append(score_std_cell)
    def sort_row_list_and_convert_into_cells():
        ''' this is a complex function,
            it sorts by row,
            then find each attribute,
            then looks for the attribute object,
            then sees if the value is outside the bounds of a standard deviation,
            then sets object colors
        '''
        extra_rows = 0
        extra_rows += function_globals.default_row_buffer_before_stocks

        score_avg = None
        score_std = None
        # first, get score avg and std
        for attribute_obj in attribute_list:
            if attribute_obj.name == "Score":
                score_avg = attribute_obj.avg
                score_std = attribute_obj.std

        first_iteration = True
        last_sigma_stage = None

        function_globals.row_list.sort(key = lambda x: x.Score.text, reverse=True)
        for stock_row in function_globals.row_list:
            # Now, check if we need a blank row between sigma's
            if   stock_row.Score.text > (score_avg + (score_std * 3)):
                # greater than 3 sigmas
                if first_iteration:
                    first_iteration = False
                    last_sigma_stage = 3

            elif stock_row.Score.text > (score_avg + (score_std * 2)):
                # greater than 2 sigmas
                if first_iteration:
                    first_iteration = False
                    last_sigma_stage = 2
                if last_sigma_stage > 2:
                    last_sigma_stage = 2

                    empty_row_num = function_globals.row_list.index(stock_row) + extra_rows
                    empty_cell = Cell(text = " ", col = 0, row = empty_row_num, row_title = "3 sigma")
                    function_globals.all_cells_list.append(empty_cell)
                    extra_rows += 1

            elif stock_row.Score.text > (score_avg + (score_std * 1)):
                # greater than 1 sigma
                if first_iteration:
                    first_iteration = False
                    last_sigma_stage = 1
                if last_sigma_stage > 1:
                    last_sigma_stage = 1

                    empty_row_num = function_globals.row_list.index(stock_row) + extra_rows
                    empty_cell = Cell(text = " ", col = 0, row = empty_row_num, row_title = "2 sigma")
                    function_globals.all_cells_list.append(empty_cell)
                    extra_rows += 1

            elif stock_row.Score.text > (score_avg + (score_std * 0)):
                # greater than avg
                if first_iteration:
                    first_iteration = False
                    last_sigma_stage = 0
                if last_sigma_stage > 0:
                    last_sigma_stage = 0

                    empty_row_num = function_globals.row_list.index(stock_row) + extra_rows
                    empty_cell = Cell(text = " ", col = 0, row = empty_row_num, row_title = "1 sigma")
                    function_globals.all_cells_list.append(empty_cell)
                    extra_rows += 1

            elif stock_row.Score.text >= (score_avg - (score_std * 1)):
                if first_iteration:
                    first_iteration = False
                    last_sigma_stage = 0
                if last_sigma_stage > -1:
                    last_sigma_stage = -1

                    empty_row_num = function_globals.row_list.index(stock_row) + extra_rows
                    empty_cell = Cell(text = " ", col = 0, row = empty_row_num, row_title = " ")
                    function_globals.all_cells_list.append(empty_cell)
                    extra_rows += 1

                    # this is the average cell
                    empty_row_num = function_globals.row_list.index(stock_row) + extra_rows
                    avg_cell = Cell(text = " ", col = 0, row = empty_row_num, row_title = "Average")
                    function_globals.all_cells_list.append(avg_cell)
                    function_globals.avg_row_cell = avg_cell
                    extra_rows += 1

                    empty_row_num = function_globals.row_list.index(stock_row) + extra_rows
                    empty_cell = Cell(text = " ", col = 0, row = empty_row_num, row_title = " ")
                    function_globals.all_cells_list.append(empty_cell)
                    extra_rows += 1

            elif stock_row.Score.text > (score_avg - (score_std * 2)):
                # greater than 1 sigma
                if first_iteration:
                    first_iteration = False
                    last_sigma_stage = -1
                if last_sigma_stage > -2:
                    last_sigma_stage = -2

                    empty_row_num = function_globals.row_list.index(stock_row) + extra_rows
                    empty_cell = Cell(text = " ", col = 0, row = empty_row_num, row_title = "-1 sigma")
                    function_globals.all_cells_list.append(empty_cell)
                    extra_rows += 1

            elif stock_row.Score.text > (score_avg - (score_std * 3)):
                # greater than 2 sigma
                if first_iteration:
                    first_iteration = False
                    last_sigma_stage = -2
                if last_sigma_stage > -3:
                    last_sigma_stage = -3

                    empty_row_num = function_globals.row_list.index(stock_row) + extra_rows
                    empty_cell = Cell(text = " ", col = 0, row = empty_row_num, row_title = "-2 sigma")
                    function_globals.all_cells_list.append(empty_cell)
                    extra_rows += 1



            row_num = function_globals.row_list.index(stock_row) + extra_rows

            for attribute_obj in attribute_list:
                data_cell = getattr(stock_row, attribute_obj.name)
                if data_cell.text is not None:
                    data = data_cell.text
                    background_color = None
                    if attribute_obj.avg is not None and attribute_obj.std is not None and data is not None:
                        if attribute_obj.size_factor == "big":
                            if data > (attribute_obj.avg + attribute_obj.std):
                                # better than 1 standard deviation -> green!
                                background_color = "#CCFFCC"
                            elif data < (attribute_obj.avg - (attribute_obj.std * 2)):
                                # worse than 2 standard deviations -> red :/
                                background_color = "#F78181"
                            elif data < (attribute_obj.avg - attribute_obj.std):
                                # worse than 1 standard deviation -> orange
                                background_color = "#FFB499"
                        elif attribute_obj.size_factor == "small":
                            if data < (attribute_obj.avg - attribute_obj.std):
                                # better than 1 standard deviation -> green!
                                background_color = "#CCFFCC"
                            elif data > (attribute_obj.avg + (attribute_obj.std * 2)):
                                # worse than 2 standard deviations -> red :/
                                background_color = "#F78181"
                            elif data > (attribute_obj.avg + attribute_obj.std):
                                # worse than 1 standard deviation -> orange
                                background_color = "#FFB499"

                    new_data_cell = Cell(text = data)
                    new_data_cell.row = row_num
                    new_data_cell.col = attribute_obj.col
                    new_data_cell.background_color = background_color
                    new_data_cell.text_color = data_cell.text_color
                    new_data_cell.align_right = attribute_obj.align_right

                    if attribute_obj.display == "2":
                        new_data_cell.text = "%.2f" % data
                    elif attribute_obj.display == "%":
                        try:
                            data = float(data)
                            if data.is_integer():
                                new_data_cell.text = str(int(round(float(data)))) + "%"
                            else:
                                new_data_cell.text = ("%.2f" % data) + "%"
                        except:
                            new_data_cell.text = str(data) + "%"
                    elif attribute_obj.display == "$":
                        try:
                            new_data_cell.text = config.locale.currency(float(data), grouping = True)
                        except Exception as e:
                            print line_number(), e
                            new_data_cell.text = "$" + str(data)
                    elif attribute_obj.display == "rnk":
                        try:
                            if float(data).is_integer():
                                new_data_cell.text = str(int(data))
                            else:
                                new_data_cell.text = str(data)
                        except:
                            new_data_cell.text = str(data)
                    try:
                        new_data_cell.row_title = stock_row.stock.ticker
                    except:
                        pass
                    function_globals.all_cells_list.append(new_data_cell)
def rainbow_spreadsheet(stock_list):
    "rainbow sort"

    cell_list = [] # Cell object imported above

    class Row(object):
        "this will help in sorting cells"
        def __init__(self, stock):
            self.stock = stock

    if not stock_list: # no empty list drama
        return

    row_list = []
    for stock in stock_list:
        the_row_of_this_stock = stock_list.index(stock)
        this_row = Row(stock = stock)
        # standard stock attributes
        this_row.ticker = stock.ticker
        this_row.ticker_len = len(stock.ticker)
        this_row.firm_name = stock.firm_name
        row_list.append(this_row)

    def sort_my_rows(row_list):
        'sorts rows by ticker length'
        row_list.sort(key = lambda row: row.ticker_len)

    sort_my_rows(row_list)

    # set colors!
    for row in row_list:
        if row.ticker_len == 1:
            row.row_color = "#FFCCFF"
        elif row.ticker_len == 2:
            row.row_color = "#FFCCCC"
        elif row.ticker_len == 3:
            row.row_color = "#FFFFCC"
        elif row.ticker_len == 4:
            row.row_color = "#CCFFCC"
        elif row.ticker_len == 5:
            row.row_color = "#CCFFFF"
        elif row.ticker_len == 6:
            row.row_color = "#CCCCFF"
        elif row.ticker_len == 7:
            row.row_color = "#CC99FF"
        elif row.ticker_len > 7:
            row.row_color = "#FFFFFF"

    def make_rainbow_row_list(row_list):
        ones_list =     [row for row in row_list if row.ticker_len == 1]
        twos_list =     [row for row in row_list if row.ticker_len == 2]
        threes_list =   [row for row in row_list if row.ticker_len == 3]
        fours_list =    [row for row in row_list if row.ticker_len == 4]
        fives_list =    [row for row in row_list if row.ticker_len == 5]
        sixs_list =     [row for row in row_list if row.ticker_len == 6]
        sevens_list =   [row for row in row_list if row.ticker_len == 7]

        len_list = [ones_list, twos_list, threes_list, fours_list, fives_list, sixs_list, sevens_list]

        largest_len = 0
        for num_list in len_list:
            if len(num_list) > largest_len:
                largest_len = len(num_list)


        rainbow_list = []
        for i in range(largest_len):
            for num_list in len_list:
                try:
                    rainbow_list.append(num_list[i])
                except:
                    pass
        return rainbow_list

    row_list = make_rainbow_row_list(row_list)

    for row in row_list:
        ticker_cell = Cell(text = row.ticker, row = row_list.index(row), col = 0, col_title = "ticker", background_color = row.row_color)
        firm_name_cell = Cell(text = row.firm_name, row = row_list.index(row), col = 1, col_title = "name", background_color = row.row_color)
        ticker_len_cell = Cell(text = row.ticker_len, row = row_list.index(row), col = 2, col_title = "ticker length", background_color = row.row_color)
        cell_list.append(ticker_cell)
        cell_list.append(firm_name_cell)
        cell_list.append(ticker_len_cell)


    one_longer_than_row_list = len(row_list)
    end_cell = Cell(text = "", row = one_longer_than_row_list, col = 0, row_title = "end")
    cell_list.append(end_cell)
    return cell_list
    def create_data_scores():

        for attribute_obj in attribute_list:
            if attribute_obj.size_factor:
                # first iterate over each attribute, to find the mean and standard dev

                unadjusted_attribute_data_list_valid_values_only = []
                adjusted_attribute_data_list = []
                nonetype_attribute_list = []

                # seperate nonconforming data
                for row in function_globals.row_list:
                    data_cell = getattr(row, attribute_obj.name)
                    data = data_cell.text
                    try:
                        data = float(data)
                        data = round(data, 2)
                        unadjusted_attribute_data_list_valid_values_only.append(data)
                    except:
                        nonetype_attribute_list.append(data)

                if not unadjusted_attribute_data_list_valid_values_only:
                    # no reason to look at data, all is None
                    continue
                else:
                    print line_number(), unadjusted_attribute_data_list_valid_values_only

                # unadjusted avg will be rounded to 3 instead of 2 for identification purposes
                unadjusted_avg = round(numpy.mean(unadjusted_attribute_data_list_valid_values_only), 3)
                unadjusted_avg_len = len(unadjusted_attribute_data_list_valid_values_only)
                # set degree of freedom to subtract from N to 0 if only one date unit
                if len(unadjusted_attribute_data_list_valid_values_only) > 1:
                    number_to_minus_degrees_of_freedom = 1
                else:
                    number_to_minus_degrees_of_freedom = 0
                unadjusted_std = numpy.std(unadjusted_attribute_data_list_valid_values_only, ddof=number_to_minus_degrees_of_freedom)

                if not (isinstance(unadjusted_avg, float) and isinstance(unadjusted_avg_len, float) and isinstance(unadjusted_std, float) ):
                    print line_number()
                    print "unadjusted_avg:", unadjusted_avg
                    print "unadjusted_avg_len:", unadjusted_avg_len
                    print "unadjusted_std:", unadjusted_std


                # set nonconforming data to avg of conforming data
                nonetype_to_avg_attribute_list = []
                for nonconforming_data in nonetype_attribute_list:
                    nonetype_to_avg_attribute_list.append(unadjusted_avg)

                # set conforming data and replaced data into the min/max checks
                for row in function_globals.row_list:
                    data_cell = getattr(row, attribute_obj.name)
                    data = data_cell.text
                    try:
                        data = float(data)
                        data = round(data, 2)
                    except:
                        # replace nonconforming data with avg again
                        data = unadjusted_avg
                    if type(data) is float:
                        if attribute_obj.minimum or attribute_obj.maximum:
                            # normalize data
                            if data < attribute_obj.minimum:
                                adjusted_data = attribute_obj.minimum
                                data_cell.text_color = "#B8B8B8"
                            elif data > attribute_obj.maximum:
                                adjusted_data = attribute_obj.maximum
                                data_cell.text_color = "#B8B8B8"
                            else: # irrelevant
                                adjusted_data = data
                            adjusted_attribute_data_list.append(adjusted_data)
                        elif data and attribute_obj.name == "Cur Ratio": # strange variation in rms code
                            if data > 10.:
                                adjusted_data = 1.7
                                data_cell.text_color = "#B8B8B8"
                            elif data > 4.:
                                adjusted_data = 4.
                                data_cell.text_color = "#B8B8B8"
                            else:
                                adjusted_data = data
                            adjusted_attribute_data_list.append(adjusted_data)
                        elif data and attribute_obj.name == "ROE %"+"Dev": # strange variation in rms code
                            if data < 0.:
                                adjusted_data = 1.5
                                data_cell.text_color = "#B8B8B8"
                            else:
                                adjusted_data = data
                            adjusted_attribute_data_list.append(adjusted_data)
                        elif data and attribute_obj.name == "Inv2sales Grwth": # strange variation in rms code
                            adjusted_data = -abs(data-1.)
                            data_cell.text_color = "#B8B8B8"
                            adjusted_attribute_data_list.append(adjusted_data)
                        else:
                            adjusted_attribute_data_list.append(data)

                adjusted_data_avg = numpy.mean(adjusted_attribute_data_list)
                adjusted_data_avg_len = len(adjusted_attribute_data_list)
                 # set degree of freedom to subtract from N to 0 if only one date unit
                if len(adjusted_attribute_data_list) > 1:
                    number_to_minus_degrees_of_freedom = 1
                else:
                    number_to_minus_degrees_of_freedom = 0
                adjusted_data_std = numpy.std(adjusted_attribute_data_list, ddof=number_to_minus_degrees_of_freedom) # 1 degrees of freedom for std

                if not (isinstance(adjusted_data_avg, float) and isinstance(adjusted_data_avg_len, float) and isinstance(adjusted_data_std, float) ):
                    print line_number()
                    print "adjusted_avg:", adjusted_data_avg
                    print "adjusted_avg_len:", adjusted_data_avg_len
                    print "adjusted_std:", adjusted_data_std

                # set attribute average standard deviation for colors later
                attribute_obj.avg = float(round(adjusted_data_avg, 2))
                attribute_obj.std = float(round(adjusted_data_std, 2))
                #print line_number()
                #print "\n"*2
                #print sorted(adjusted_attribute_data_list)
                #print line_number(), attribute_obj.name, "unadjusted avg", unadjusted_avg, "length=", unadjusted_avg_len
                #print line_number(), attribute_obj.name, "unadjusted std", unadjusted_std
                #print line_number(), attribute_obj.name, "adjusted avg", adjusted_data_avg, "length=", adjusted_data_avg_len
                #print line_number(), attribute_obj.name, "adjusted std", adjusted_data_std
                #print "\n"*2

                function_globals.attrbute_name_avg_and_std_triple_list.append([attribute_obj.name, unadjusted_avg, unadjusted_std])

                for row in function_globals.row_list:
                    if attribute_obj.size_factor:
                        #b =  attribute_obj.function(row.stock)
                        try:
                            b = float(attribute_obj.function(row.stock))
                        except:
                            if attribute_obj.avg:
                                b = attribute_obj.avg
                            else:
                                print line_number(), "No avg for", attribute_obj.name, "set avg to 0"
                                b = 0.

                        if not (type(b) is float):
                            print line_number(), "Error: b should always be float"
                            print type(b)
                            print attribute_obj.name
                            print attribute_obj.avg

                        if attribute_obj.minimum or attribute_obj.maximum:
                            # normalize data
                            if b < attribute_obj.minimum:
                                b = attribute_obj.minimum
                            elif b > attribute_obj.maximum:
                                b = attribute_obj.maximum
                        elif b and attribute_obj.name == "Cur Ratio": # strange variation in rms code
                            if b > 10.:
                                b = 1.7
                            elif b > 4.:
                                b = 4.
                        elif b and attribute_obj.name == "ROE %"+"Dev": # strange variation in rms code
                            if b < 0.:
                                b = 1.5
                        elif b and attribute_obj.name == "Inv2sales Grwth": # strange variation in rms code
                            b = -abs(b-1.)
                        b = round(b, 2)
                        try:
                            mu = float(adjusted_data_avg)
                        except:
                            mu = None
                        try:
                            sigma = float(adjusted_data_std)
                        except:
                            sigma = None
                        if type(b) is float and type(mu) is float and sigma:
                            z_score = (b-mu)/sigma
                            z_score = round(z_score, 2)
                        else:
                            z_score = None
                        z_score_cell = Cell(text = z_score)
                        setattr(row, str(attribute_obj.name) + "__z_score", z_score_cell)

        for stock_row in function_globals.row_list:
            score = 0.0
            for attribute_obj in attribute_list:
                weight = attribute_obj.weight
                if weight:
                    try:
                        z_score_data_cell = getattr(stock_row, attribute_obj.name + "__z_score")
                        z_score_data = z_score_data_cell.text
                        if z_score_data is not None:
                            modified_score_value = z_score_data * weight
                            if attribute_obj.size_factor:
                                if attribute_obj.size_factor == "big":
                                    score += modified_score_value
                                elif attribute_obj.size_factor == "small":
                                    score -= modified_score_value
                                else:
                                    print line_number(), "Error: something went wrong here"
                                z_score_data_cell.text = score
                    except Exception, e:
                        print line_number(), e
                        pass
            stock_row.Score.text = score
 def top_row():
     text = 'BUY CANDIDATES'
     top_row_cell = Cell(row = 0, col=0, text=text)
     function_globals.all_cells_list.append(top_row_cell)
Ejemplo n.º 9
0
    def create_data_scores(row_list):
        for attribute_obj in attribute_list:
            # first iterate over each attribute, to find the mean and standard dev

            adjusted_attribute_data_list = []

            for row in row_list:
                data_cell = getattr(row, attribute_obj.name)
                data = data_cell.text
                if data is not None:
                    if attribute_obj.minimum or attribute_obj.maximum:
                        # normalize data
                        if data < attribute_obj.minimum:
                            adjusted_data = attribute_obj.minimum
                            data_cell.text_color = "#333333"
                        elif data > attribute_obj.maximum:
                            adjusted_data = attribute_obj.maximum
                            data_cell.text_color = "#333333"
                adjusted_attribute_data_list.append(data)

            # see if we can compute average
            not_none_data_list = []
            for x in adjusted_attribute_data_list:
                try:
                    float(x)
                    not_none_data_list.append(x)
                except:
                    # not a number
                    pass

            if not not_none_data_list:
                # no reason to look at data, all is None
                continue

            try:  # get average and standard deviation if possible
                data_avg = numpy.mean(not_none_data_list, axis=0)
            except Exception, e:
                print line_number(), e

            # apply avg of data to any missing data
            for row in row_list:
                if getattr(row, attribute_obj.name) is None:
                    setattr(row, attribute_obj.name, data_avg)

            try:
                data_list_averaged_data = []
                for data in adjusted_attribute_data_list:
                    if data is not None:
                        data_list_averaged_data.append(data)
                    else:
                        data_list_averaged_data.append(data_avg)
                data_std = numpy.std(data_list_averaged_data)

                # set attribute average standard deviation for colors later
                attribute_obj.avg = data_avg
                attribute_obj.std = data_std

                for stock_row in row_list:
                    b = attribute_obj.function(stock_row.stock)
                    mu = float(data_avg)
                    sigma = float(data_std)
                    if b is not None and mu is not None and sigma:
                        z_score = (b - mu) / sigma
                    else:
                        z_score = None
                    z_score_cell = Cell(text=z_score)
                    setattr(stock_row,
                            str(attribute_obj.name) + "__z_score",
                            z_score_cell)
            except Exception, e:
                print line_number(), e
Ejemplo n.º 10
0
 def top_row():
     text = 'BUY CANDIDATES'
     top_row_cell = Cell(row=0, col=0, text=text)
     all_cells_list.append(top_row_cell)
def sample_spreadsheet(stock_list):
    "sample ticker sort"

    cell_list = []  # Cell object imported above

    class Row(object):
        "this will help in sorting cells"

        def __init__(self, stock):
            self.stock = stock

    if not stock_list:  # no empty list drama
        return

    row_list = []
    for stock in stock_list:
        the_row_of_this_stock = stock_list.index(stock)
        this_row = Row(stock=stock)
        # standard stock attributes
        this_row.ticker = stock.ticker
        this_row.ticker_len = len(stock.ticker)
        this_row.firm_name = stock.firm_name
        row_list.append(this_row)

    def sort_my_rows(row_list):
        'sorts rows by ticker length'
        row_list.sort(key=lambda row: row.ticker_len)

    sort_my_rows(row_list)

    # set colors!
    for row in row_list:
        if row.ticker_len == 1:
            row.row_color = "#FFCCFF"
        elif row.ticker_len == 2:
            row.row_color = "#FFCCCC"
        elif row.ticker_len == 3:
            row.row_color = "#FFFFCC"
        elif row.ticker_len == 4:
            row.row_color = "#CCFFCC"
        elif row.ticker_len == 5:
            row.row_color = "#CCFFFF"
        elif row.ticker_len == 6:
            row.row_color = "#CCCCFF"
        elif row.ticker_len == 7:
            row.row_color = "#CC99FF"
        elif row.ticker_len > 7:
            row.row_color = "#FFFFFF"

    for row in row_list:
        ticker_cell = Cell(text=row.ticker,
                           row=row_list.index(row),
                           col=0,
                           col_title="ticker",
                           background_color=row.row_color)
        firm_name_cell = Cell(text=row.firm_name,
                              row=row_list.index(row),
                              col=1,
                              col_title="name",
                              background_color=row.row_color)
        ticker_len_cell = Cell(text=row.ticker_len,
                               row=row_list.index(row),
                               col=2,
                               col_title="ticker length",
                               background_color=row.row_color)
        cell_list.append(ticker_cell)
        cell_list.append(firm_name_cell)
        cell_list.append(ticker_len_cell)

    one_longer_than_row_list = len(row_list)
    end_cell = Cell(text="",
                    row=one_longer_than_row_list,
                    col=0,
                    row_title="end")
    cell_list.append(end_cell)
    return cell_list