Ejemplo n.º 1
0
 def point_addition(self, P, Q):
     x = (P.x * Q.y + Q.x * P.y) % self.p
     x = (x * NumberTheory.modinv(1 + self.d * P.x * Q.x * P.y * Q.y,
                                  self.p)) % self.p
     y = (P.y * Q.y - self.a * P.x * Q.x) % self.p
     y = (y * NumberTheory.modinv(1 - self.d * P.x * Q.x * P.y * Q.y,
                                  self.p)) % self.p
     return self.point(x, y)
Ejemplo n.º 2
0
    def decode_point(self, serialized_point):
        assert (isinstance(serialized_point, bytes))
        if len(serialized_point) != self.element_octet_cnt:
            raise InvalidInputException(
                "Do not know how to decode %s point. Expected %d octets, but got %d."
                % (str(self), self.element_octet_cnt, len(serialized_point)))

        serialized_point = bytearray(serialized_point)
        x_lsb = (serialized_point[-1] >> 7) & 1
        serialized_point[-1] &= 0x7f
        y = int.from_bytes(serialized_point, byteorder="little")

        if y >= self.p:
            raise InvalidInputException(
                "y coordinate of point must be smaller than p.")

        # x^2 = (1 - y^2) / (a - dy^2)
        x2 = (1 - y * y) % self.p
        x2 *= NumberTheory.modinv(self.a - self.d * y * y, self.p)
        (x_pos, x_neg) = NumberTheory.sqrt_mod_p(x2, self.p)

        if x_lsb == 0:
            x = x_pos
        else:
            x = x_neg

        point = self.point(x, y)
        return point
Ejemplo n.º 3
0
 def point_addition(self, P, Q):
     if P is None:
         # O + Q = Q
         return Q
     elif Q is None:
         # P + O = P
         return P
     elif ((P.x == Q.x) and (((P.y + Q.y) % self.p) == 0)):
         # P + (-P) = O
         return None
     elif P == Q:
         # Point doubling
         s = ((3 * P.x**2) + self.a) * NumberTheory.modinv(2 * P.y, self.p)
         x = (s * s - (2 * P.x)) % self.p
         y = (s * (P.x - x) - P.y) % self.p
         return EllipticCurvePoint(self, x, y)
     else:
         # Point addition
         s = (P.y - Q.y) * NumberTheory.modinv(P.x - Q.x, self.p)
         x = ((s**2) - P.x - Q.x) % self.p
         y = (s * (P.x - x) - P.y) % self.p
         return EllipticCurvePoint(self, x, y)
Ejemplo n.º 4
0
    def create(cls,
               p,
               q,
               e=0x10001,
               swap_e_d=False,
               valid_only=True,
               carmichael_totient=False):
        n = p * q
        if not carmichael_totient:
            totient = (p - 1) * (q - 1)
        else:
            totient = NumberTheory.lcm(p - 1, q - 1)
        gcd = NumberTheory.gcd(e, totient)
        if (gcd != 1) and valid_only:
            raise KeyCorruptException(
                "e = 0x%x isnt't relative prime to totient, gcd = 0x%x. Either accept broken keys or fix e."
                % (e, gcd))
        d = NumberTheory.modinv(e, totient)
        if swap_e_d:
            (e, d) = (d, e)

        dmp1 = d % (p - 1)
        dmq1 = d % (q - 1)
        iqmp = NumberTheory.modinv(q, p)
        asn1 = cls._ASN1_MODEL()
        asn1["version"] = 0
        asn1["modulus"] = n
        asn1["publicExponent"] = e
        asn1["privateExponent"] = d
        asn1["prime1"] = p
        asn1["prime2"] = q
        asn1["exponent1"] = dmp1
        asn1["exponent2"] = dmq1
        asn1["coefficient"] = iqmp
        der = pyasn1.codec.der.encoder.encode(asn1)
        return cls(der)
Ejemplo n.º 5
0
 def test_modinv(self):
     p = 2003
     for _ in range(10):
         r = random.randint(2, p - 1)
         inv = NumberTheory.modinv(r, p)
         self.assertEqual(r * inv % p, 1)
Ejemplo n.º 6
0
 def test_modinv_exception(self):
     with self.assertRaises(InvalidInputException):
         NumberTheory.modinv(0, 101)