Ejemplo n.º 1
0
    def initialize(self, options):
        self.qobj_compiler = xacc.getCompiler('qobj')
        if 'shots' in options:
            self.shots = options['shots']

        if 'backend' in options:
            self.backend = options['backend']
            import json
            from qiskit.providers.models.backendproperties import BackendProperties
            from qiskit.providers.aer import noise
            self.modeled_qpu = xacc.getAccelerator('ibm:' + self.backend)
            props = self.modeled_qpu.getProperties()
            jsonStr = props['total-json']
            # print("jsonStr: \n", jsonStr)
            properties = BackendProperties.from_dict(json.loads(jsonStr))
            ro_error = True if 'readout_error' in options and options[
                'readout_error'] else False
            rel = True if 'thermal_relaxation' in options and options[
                'thermal_relaxation'] else False
            ge = True if 'gate_error' in options and options[
                'gate_error'] else False
            self.noise_model = noise.NoiseModel.from_backend(
                backend,
                readout_error=ro_error,
                thermal_relaxation=rel,
                gate_error=ge)
Ejemplo n.º 2
0
 def setUp(self):
     self.qpu = xacc.getAccelerator('local-ibm')
     self.buffer = self.qpu.createBuffer('q', 2)
     self.ham = PauliOperator(5.906709445) + \
                 PauliOperator({0: 'X', 1: 'X'}, -2.1433) + \
                 PauliOperator({0: 'Y', 1: 'Y'}, -2.1433) + \
                 PauliOperator({0: 'Z'}, .21829) + \
                 PauliOperator({1: 'Z'}, -6.125)
Ejemplo n.º 3
0
def runVqeGradientDescent(gradientStrategy):
    # Get access to the desired QPU and
    # allocate some qubits to run on
    qpu = xacc.getAccelerator('qpp')

    # Construct the Hamiltonian as an XACC PauliOperator
    ham = xacc.getObservable('pauli', '1.0 Y0')

    # Ansatz circuit:
    xacc.qasm('''.compiler xasm
    .circuit ansatz
    .qbit q
    .parameters t0, t1, t2, t3
    // State-prep 
    Ry(q[0], pi/4);
    Ry(q[1], pi/3);
    Ry(q[2], pi/7);
    // Parametrized gates (layer 1)
    Rz(q[0], t0);
    Rz(q[1], t1);
    CX(q[0], q[1]);
    CX(q[1], q[2]);
    // Parametrized gates (layer 2)
    Ry(q[1], t2);
    Rx(q[2], t3);
    CX(q[0], q[1]);
    CX(q[1], q[2]);
    ''')

    # We need 4 qubits
    buffer = xacc.qalloc(4)
    ansatz_circuit = xacc.getCompiled('ansatz')
    initParams = [0.432, -0.123, 0.543, 0.233]
    opt = xacc.getOptimizer(
        'mlpack',
        {
            # Using gradient descent:
            'mlpack-optimizer': 'gd',
            'initial-parameters': initParams,
            'mlpack-step-size': 0.01,
            'mlpack-max-iter': 200
        })

    # Create the VQE algorithm with the requested gradient strategy
    vqe = xacc.getAlgorithm(
        'vqe', {
            'ansatz': ansatz_circuit,
            'accelerator': qpu,
            'observable': ham,
            'optimizer': opt,
            'gradient_strategy': gradientStrategy
        })
    vqe.execute(buffer)
    energies = buffer.getInformation('params-energy')
    return energies
Ejemplo n.º 4
0
    def execute(self, inputParams):
        xacc_opts = inputParams['XACC']
        acc_name = xacc_opts['accelerator']

        if 'verbose' in xacc_opts and xacc_opts['verbose']:
            xacc.set_verbose(True)

        if 'Benchmark' not in inputParams:
            xacc.error(
                'Invalid benchmark input - must have Benchmark description')

        if 'Circuit' not in inputParams:
            xacc.error(
                'Invalid benchmark input - must have circuit description')

        self.qpu = xacc.getAccelerator(acc_name, xacc_opts)
        if 'Decorators' in inputParams:
            if 'readout_error' in inputParams['Decorators']:
                qpu = xacc.getAcceleratorDecorator('ro-error', qpu)

        provider = xacc.getIRProvider('quantum')

        if 'source' in inputParams['Circuit']:
            # here assume this is xasm always
            src = inputParams['Circuit']['source']
            xacc.qasm(src)
            # get the name of the circuit
            circuit_name = None
            for l in src.split('\n'):
                if '.circuit' in l:
                    circuit_name = l.split(' ')[1]
            self.circuit_name = circuit_name
            ansatz = xacc.getCompiled(circuit_name)

        opts = {'circuit': ansatz, 'accelerator': self.qpu}
        if 'qubit-map' in inputParams['Circuit']:
            raw_qbit_map = inputParams['Circuit']['qubit-map']
            if not isinstance(raw_qbit_map, list):
                raw_qbit_map = ast.literal_eval(raw_qbit_map)
            self.qubit_map = raw_qbit_map
            opts['qubit-map'] = self.qubit_map

        self.qpt = xacc.getAlgorithm('qpt', opts)

        self.nq = ansatz.nLogicalBits()

        buffer = xacc.qalloc(ansatz.nLogicalBits())

        self.qpt.execute(buffer)
        return buffer
Ejemplo n.º 5
0
async def execute_qpu_request(*args, **kwargs):
    fin = open('.tmp_quil_code', 'r')
    lines = fin.readlines()
    fin.close()
    seen_quil_code = '__qpu__ void test(qreg q) {\n'
    for l in lines:
        if 'num_shots' in l:
            shots = int(l.split('=')[1])
        elif 'DECLARE' in l:
            continue
        else:
            seen_quil_code += l

    seen_quil_code += '}'
    os.remove('.tmp_quil_code')
    program = xacc.getCompiler('quil').compile(
        seen_quil_code).getComposites()[0]
    b = xacc.qalloc(program.nLogicalBits())
    xacc.getAccelerator('qpp', {'shots': shots}).execute(b, program)
    print(b)
    fout = open('.tmp_results', 'w')
    fout.write(str(b))
    fout.close()
    return "JOBIDHERE"
Ejemplo n.º 6
0
    def test_generic(self):

        qpu = xacc.getAccelerator('tnqvm')
        buffer = qpu.createBuffer('q', 4)

        @xacc.qpu(accelerator=qpu)
        def entangle(buffer):
            H(0)
            CNOT(0, 1)
            Measure(0, 0)
            Measure(1, 1)

        xacc.Initialize()

        entangle(buffer)
        self.assertEqual(entangle.nParameters(), 0)
        self.assertEqual(entangle.getFunction().toString(), 'H q0\nCNOT q0,q1\nMeasure q0\nMeasure q1\n')
Ejemplo n.º 7
0
    def setUpClass(self):
        print('setting up class')
        self.process = subprocess.Popen([
            sys.executable,
            CURRENT_TEST_DIR + '/qcs_integration_mock_servers.py',
            CURRENT_TEST_DIR
        ])
        time.sleep(2)
        forest_url = 'http://localhost:64574'
        engagement_url = forest_url
        compiler_url = forest_url
        try:
            self.qpu = xacc.getAccelerator(
                'qcs:FakeAspen-8', {
                    'shots': 500,
                    'auth_token': 'user-fake-auth',
                    'forest_server_url': forest_url,
                    'engagement_url': engagement_url,
                    'qpu_compiler_url': compiler_url,
                    'use_rpcq_auth_config': False
                })
        except:
            print('Failure in setup - shutting down the server')
            requests.post("http://localhost:64574/shutdown")
            time.sleep(2)

        xacc.qasm('''.compiler xasm
        .circuit super
        .parameters t0
        .qbit q
        H(q[0]);
        Measure(q[0]);
        ''')
        self.super = xacc.getCompiled('super')

        xacc.qasm('''.compiler xasm
        .circuit bell
        .parameters t0
        .qbit q
        H(q[0]);
        CX(q[0], q[1]);
        Measure(q[0]);
        Measure(q[1]);
        ''')
        self.bell = xacc.getCompiled('bell')
Ejemplo n.º 8
0
    def testExecuteVQE(self):
        src = """__qpu__ kernel() {
   0.7137758743754461
   -1.252477303982147 0 1 0 0
   0.337246551663004 0 1 1 1 1 0 0 0
   0.0906437679061661 0 1 1 1 3 0 2 0
   0.0906437679061661 0 1 2 1 0 0 2 0
   0.3317360224302783 0 1 2 1 2 0 0 0
   0.0906437679061661 0 1 3 1 1 0 2 0
   0.3317360224302783 0 1 3 1 3 0 0 0
   0.337246551663004 1 1 0 1 0 0 1 0
   0.0906437679061661 1 1 0 1 2 0 3 0
   -1.252477303982147 1 1 1 0
   0.0906437679061661 1 1 2 1 0 0 3 0
   0.3317360224302783 1 1 2 1 2 0 1 0
   0.0906437679061661 1 1 3 1 1 0 3 0
   0.3317360224302783 1 1 3 1 3 0 1 0
   0.3317360224302783 2 1 0 1 0 0 2 0
   0.0906437679061661 2 1 0 1 2 0 0 0
   0.3317360224302783 2 1 1 1 1 0 2 0
   0.0906437679061661 2 1 1 1 3 0 0 0
   -0.4759344611440753 2 1 2 0
   0.0906437679061661 2 1 3 1 1 0 0 0
   0.3486989747346679 2 1 3 1 3 0 2 0
   0.3317360224302783 3 1 0 1 0 0 3 0
   0.0906437679061661 3 1 0 1 2 0 1 0
   0.3317360224302783 3 1 1 1 1 0 3 0
   0.0906437679061661 3 1 1 1 3 0 1 0
   0.0906437679061661 3 1 2 1 0 0 1 0
   0.3486989747346679 3 1 2 1 2 0 3 0
   -0.4759344611440753 3 1 3 0
}"""
        op = vqe.compile(src)
        buffer = xacc.getAccelerator('tnqvm').createBuffer('q',4)

        self.assertAlmostEqual(vqe.execute(op, buffer, **{'task':'vqe', 'n-electrons':2}).energy, -1.13727, places=5)
Ejemplo n.º 9
0
import xacc

# Noise model string for a simple depolarizing noise.
depol_json = """{"gate_noise": [{"gate_name": "X", "register_location": ["0"], "noise_channels": [{"matrix": [[[[0.99498743710662, 0.0], [0.0, 0.0]], [[0.0, 0.0], [0.99498743710662, 0.0]]], [[[0.0, 0.0], [0.05773502691896258, 0.0]], [[0.05773502691896258, 0.0], [0.0, 0.0]]], [[[0.0, 0.0], [0.0, -0.05773502691896258]], [[0.0, 0.05773502691896258], [0.0, 0.0]]], [[[0.05773502691896258, 0.0], [0.0, 0.0]], [[0.0, 0.0], [-0.05773502691896258, 0.0]]]]}]}], "bit_order": "MSB"}"""
noise_model = xacc.getNoiseModel("json", {"noise-model": depol_json})
# Using Aer simulator in density matrix mode.
# Note: toJson() will convert the noise_model to IBM format to use w/ Aer
qpu = xacc.getAccelerator('aer', {
    "noise-model": noise_model.toJson(),
    "sim-type": "density_matrix"
})


# Define the quantum kernel in standard Python
@xacc.qpu(accelerator=qpu)
def test(q):
    X(q[0])


q = xacc.qalloc(1)

# run the circuit
test(q)
# print the density matrix (flattened)
print(q["density_matrix"])
Ejemplo n.º 10
0
# Demonstrate mid-circuit measurement support
# GHZ to Bell conversion
# Adapted from:
# https://quantum-computing.ibm.com/docs/manage/systems/midcircuit-measurement/#GHZ-to-Bell-State

import xacc

# Mid-circuit measurement is supportted by:
# - Simulator: qpp, qsim, aer
# - Selected IBM backends.
# qpu = xacc.getAccelerator('aer', {"shots": 1024})
qpu = xacc.getAccelerator('qpp', {"shots": 1024})
q = xacc.qalloc(3)

xacc.qasm('''
.compiler xasm
.circuit ghz_to_bell
.qbit q
H(q[2]);
CX(q[2], q[1]);
CX(q[1], q[0]);
// Z -> X basis 
H(q[0]);
// Mid-circuit measurement => Bell state
Measure(q[0]);
CX(q[2], q[1]);
H(q[2]);
X(q[0]);
Measure(q[0]);
Measure(q[1]);
Measure(q[2]);
Ejemplo n.º 11
0
import xacc

noiseModelJson = '{"errors": [{"type": "qerror", "operations": ["u1"], "instructions": [[{"name": "x", "qubits": [0]}], [{"name": "y", "qubits": [0]}], [{"name": "z", "qubits": [0]}], [{"name": "id", "qubits": [0]}]], "probabilities": [0.00025, 0.00025, 0.00025, 0.99925]}, {"type": "qerror", "operations": ["u2"], "instructions": [[{"name": "x", "qubits": [0]}], [{"name": "y", "qubits": [0]}], [{"name": "z", "qubits": [0]}], [{"name": "id", "qubits": [0]}]], "probabilities": [0.00025, 0.00025, 0.00025, 0.99925]}, {"type": "qerror", "operations": ["u3"], "instructions": [[{"name": "x", "qubits": [0]}], [{"name": "y", "qubits": [0]}], [{"name": "z", "qubits": [0]}], [{"name": "id", "qubits": [0]}]], "probabilities": [0.00025, 0.00025, 0.00025, 0.99925]}], "x90_gates": []}'

qpu = xacc.getAccelerator('aer', {
    'noise-model': noiseModelJson,
    'shots': 4096
})
qpu = xacc.getAcceleratorDecorator('mitiq', qpu)

q = xacc.qalloc(1)

xacc.qasm('''.compiler xasm
.circuit foo
.parameters x
.qbit q
for (int i = 0; i < 10; i++) {
  X(q[0]);
}
Measure(q[0]);
''')
foo = xacc.getCompiled('foo')

qpu.execute(q, foo)

print(q)
print(q.getExpectationValueZ())
Ejemplo n.º 12
0
import xacc
import xaccvqe
from xaccvqe import PauliOperator

xacc.Initialize(['--compiler','quil'])

ibm = xacc.getAccelerator('local-ibm')
tnqvm = xacc.getAccelerator('tnqvm')
rigetti = xacc.getAccelerator('rigetti')

#buffer = ibm.createBuffer('q', 2)
buffer = tnqvm.createBuffer('q', 2)

h2 = PauliOperator(5.906709445) + \
        PauliOperator({0:'X',1:'X'}, -2.1433) + \
        PauliOperator({0:'Y',1:'Y'}, -2.1433) + \
        PauliOperator({0:'Z'}, .21829) + \
        PauliOperator({1:'Z'}, -6.125)

h3 = h2 + PauliOperator(9.625) + \
    PauliOperator({1:'X',2:'X'}, -3.913119) + \
    PauliOperator({1:'Y',2:'Y'}, -3.913119) + \
    PauliOperator({2:'Z'}, -9.625)


@xaccvqe.qpu.vqe(accelerator=tnqvm, observable=h3)
def ansatz(buffer, t0, t1):
    X(0)
    Ry(t0, 2)
    CNOT(2, 0)
    Ry(t1, 1)
Ejemplo n.º 13
0
    def execute(self, inputParams):
        """
        This method is intended to be inherited by vqe and vqe_energy subclasses to allow algorithm-specific implementation.
        This superclass method adds extra information to the buffer and allows XACC settings options to be set before executing VQE.

        Parameters:
        inputParams : dictionary
                    a dictionary of input parameters obtained from .ini file

        return QPU Accelerator buffer

        Options used (obtained from inputParams):
            'qubit-map': map of logical qubits to physical qubits
            'n-execs': number of sampler executions of measurements
            'initial-parameters': list of initial parameters for the VQE algorithm

            'restart-from-file': AcceleratorDecorator option to allow restart of VQE algorithm
            'readout-error': AcceleratorDecorator option for readout-error mitigation

        """
        m = xacc.HeterogeneousMap()
        if 'shots' in inputParams:
            m.insert('shots', int(inputParams['shots']))
        if 'backend' in inputParams:
            m.insert('backend', inputParams['backend'])

        self.qpu = xacc.getAccelerator(inputParams['accelerator'], m)
        xaccOp = self.hamiltonian_generators[
            inputParams['hamiltonian-generator']].generate(inputParams)
        self.ansatz = self.ansatz_generators[inputParams['name']].generate(
            inputParams, xaccOp.nBits())
        if 'qubit-map' in inputParams:
            qubit_map = ast.literal_eval(inputParams['qubit-map'])
            xaccOp, self.ansatz, n_qubits = xaccvqe.mapToPhysicalQubits(
                xaccOp, self.ansatz, qubit_map)
        else:
            n_qubits = xaccOp.nBits()
        self.op = xaccOp
        self.n_qubits = n_qubits
        # create buffer, add some extra info (hamiltonian, ansatz-qasm, python-ansatz-qasm)
        self.buffer = xacc.qalloc(n_qubits)
        self.buffer.addExtraInfo('hamiltonian', self.op.toString())
        self.buffer.addExtraInfo(
            'ansatz-qasm',
            self.ansatz.toString().replace('\\n', '\\\\n'))
        pycompiler = xacc.getCompiler('pyxasm')
        # self.buffer.addExtraInfo('ansatz-qasm-py', '\n'.join(pycompiler.translate(self.ansatz).split('\n')[1:]))

        # heres where we can set up the algorithm Parameters
        # all versions of vqe require: Accelerator, Ansatz, Observable
        # pure-vqe requires Optimizer
        # energy calculation has optional Parameters - can be random
        self.vqe_options_dict = {
            'accelerator': self.qpu,
            'ansatz': self.ansatz,
            'observable': self.op
        }

        # get optimizers for VQE
        # needs to check if optimizer is a python plugin
        # if not, use nlopt (with options)
        # so we pull 'optimizer-options' out if available
        # Optimizer-options needs to be passed to BOTH XACC Core optimizers and to python plugins
        # vqe_options_dict is used to initialize the algorithms
        self.optimizer = None
        self.optimizer_options = {}
        if 'optimizer-options' in inputParams:
            self.optimizer_options = ast.literal_eval(
                inputParams['optimizer-options'])
        # initial-parameters for optimizer (vqe)
        # parameters for vqe-energy
        if 'initial-parameters' in inputParams:
            self.optimizer_options['initial-parameters'] = ast.literal_eval(
                inputParams['initial-parameters'])
        if 'parameters' in inputParams:
            self.optimizer_options['parameters'] = ast.literal_eval(
                inputParams['parameters'])
        if 'nlopt-maxeval' in inputParams:
            self.optimizer_options['nlopt-maxeval'] = int(
                inputParams['nlopt-maxeval'])

        # check to see if optimizer is a python plugin
        # if it is, we do not put it in self.vqe_options_dict
        # if it is not, it is put there
        if 'optimizer' in inputParams:
            if inputParams['optimizer'] in self.vqe_optimizers:
                self.optimizer = self.vqe_optimizers[inputParams['optimizer']]
            else:
                self.optimizer = xacc.getOptimizer(inputParams['optimizer'],
                                                   self.optimizer_options)
        else:
            self.optimizer = xacc.getOptimizer('nlopt', self.optimizer_options)
        # vqe.py then will check vqe_options_dict for optimizer; if it isn't there, run python optimizer
        # and of course if it is, we run with XACC
        self.buffer.addExtraInfo('accelerator', inputParams['accelerator'])

        # need to make sure the AcceleratorDecorators work correctly
        if 'n-execs' in inputParams:
            xacc.setOption('sampler-n-execs', inputParams['n-execs'])
            self.qpu = xacc.getAcceleratorDecorator('improved-sampling',
                                                    self.qpu)

        if 'restart-from-file' in inputParams:
            xacc.setOption('vqe-restart-file',
                           inputParams['restart-from-file'])
            self.qpu = xacc.getAcceleratorDecorator('vqe-restart', self.qpu)
            self.qpu.initialize()

        if 'readout-error' in inputParams and inputParams['readout-error']:
            self.qpu = xacc.getAcceleratorDecorator('ro-error', self.qpu)

        if 'rdm-purification' in inputParams and inputParams[
                'rdm-purification']:
            print("setting RDM Purification")
            self.qpu = xacc.getAcceleratorDecorator('rdm-purification',
                                                    self.qpu)
            m = xacc.HeterogeneousMap()
            m.insert('fermion-observable', self.op)
            self.qpu.initialize(m)

        self.vqe_options_dict = {
            'optimizer': self.optimizer,
            'accelerator': self.qpu,
            'ansatz': self.ansatz,
            'observable': self.op
        }

        xacc.setOptions(inputParams)
Ejemplo n.º 14
0
import xacc

qpu = xacc.getAccelerator('aer')
qbits = xacc.qalloc(2)

# Create a bell state program with too many cnots
xacc.qasm('''
.compiler xasm
.circuit foo
.parameters x,y,z
.qbit q
H(q[0]);
CX(q[0], q[1]);
CX(q[0], q[1]);
CX(q[0], q[1]);
Measure(q[0]);
Measure(q[1]);
''')
f = xacc.getCompiled('foo')

# Run the python contributed IRTransformation that uses qiskit
optimizer = xacc.getIRTransformation('qiskit-cx-cancellation')
optimizer.apply(f, None, {})

# should have 4 instructions, not 6
assert (4 == f.nInstructions())
print(f.toString())

qbits = xacc.qalloc(2)
qpu.execute(qbits, f)
Ejemplo n.º 15
0
import xacc

xacc.Initialize()

# Get access to D-Wave QPU and
# allocate some qubits
dwave = xacc.getAccelerator('dwave')
qubits = dwave.createBuffer('q')


# Define the function we'd like to
# off-load to the QPU, here
# we're using a the QMI low-level language
@xacc.qpu(accelerator=dwave)
def f(buffer, h, j):
    qmi(0, 0, h)
    qmi(1, 1, h)
    qmi(0, 1, j)


# Execute on D-Wave
f(qubits, 1., 2.)

# Print the buffer, this displays
# solutions and energies
print(qubits)

xacc.Finalize()
Ejemplo n.º 16
0
import xacc

opstr = '''(0.174073,0) Z2 Z3 +
           (0.1202,0) Z1 Z3 +
           (0.165607,0) Z1 Z2 +
           (0.165607,0) Z0 Z3 +
           (0.1202,0) Z0 Z2 +
           (-0.0454063,0) Y0 Y1 X2 X3 +
           (-0.220041,0) Z3 +
           (-0.106477,0) +
           (0.17028,0) Z0 +
           (-0.220041,0) Z2 +
           (0.17028,0) Z1 +
           (-0.0454063,0) X0 X1 Y2 Y3 +
           (0.0454063,0) X0 Y1 Y2 X3 +
           (0.168336,0) Z0 Z1 +
           (0.0454063,0) Y0 X1 X2 Y3'''

op = xacc.getObservable('pauli', opstr)

qpu = xacc.getAccelerator('tnqvm')


@xacc.qpu(algo='vqe', accelerator=qpu, observable=op)
def ansatz_vqe(q, t0, t1):
    uccsd(q, {"ne": 2, "nq": 4})


print(ansatz_vqe.getFunction().toString())
buffer = xacc.qalloc(4)
ansatz_vqe(buffer, 0., 0.)
Ejemplo n.º 17
0
from pyquil.gates import CNOT, H, MEASURE
from pyquil import get_qc, Program
import xacc
import qiskit

circ = qiskit.QuantumCircuit(2, 2)
circ.h(0)
circ.cx(0, 1)
circ.measure([0, 1], [0, 1])

qpu = xacc.getAccelerator('qpp', {'shots': 1024})

q = xacc.qalloc(2)
qpu.execute(q, circ)

print(q)


p = Program()
p += H(0)
p += CNOT(0, 1)
ro = p.declare('ro', 'BIT', 2)
p += MEASURE(0, ro[0])
p += MEASURE(1, ro[1])

r = xacc.qalloc(2)
qpu.execute(r, p)

print(r)

provider = xacc.getIRProvider('quantum')
Ejemplo n.º 18
0
import xacc

# Get the Aer Accelerator, provides noise modeling
# based on specified IBM backend. Can turn on
# readout_error, thermal_relaxation, and gate_error
qpu = xacc.getAccelerator('aer', {
    'shots': 1024,
    'backend': 'ibmq_johannesburg',
    'readout_error': True
})


# Define the quantum kernel in standard Python
@xacc.qpu(accelerator=qpu)
def bell(q):
    H(q[0])
    CX(q[0], q[1])
    Measure(q[0])
    Measure(q[1])


# Allocate 2 qubits
q = xacc.qalloc(2)

# run the bell state computation
bell(q)

print(q)
Ejemplo n.º 19
0
import xacc
import numpy as np
xacc.set_verbose(True)
# Choose the QPU on which to
# characterize the process matrix for a Hadamard
qpu = xacc.getAccelerator('ibm:ibmq_poughkeepsie')

# Create the CompositeInstruction containing a
# single Hadamard instruction
provider = xacc.getIRProvider('quantum')
circuit = provider.createComposite('U')
hadamard = provider.createInstruction('H', [0])
circuit.addInstruction(hadamard)

# Create the Algorithm, give it the circuit
# to characterize and the backend to target
qpt = xacc.getAlgorithm('qpt', {'circuit':circuit, 'accelerator':qpu}) # map logical 0 to physical 1

# Allocate a qubit, this will
# store our tomography results
buffer = xacc.qalloc(1)

# Execute
qpt.execute(buffer)

# Compute the fidelity with respect to
# the ideal hadamard process
F = qpt.calculate('fidelity', buffer, {'chi-theoretical-real':[0., 0., 0., 0., 0., 1., 0., 1., 0., 0., 0., 0., 0., 1., 0., 1.]})
print('\nFidelity: ', F)

# Can get the chi process matrix and print it
Ejemplo n.º 20
0
    def execute(self, inputParams):
        xacc_opts = inputParams['XACC']
        acc_name = xacc_opts['accelerator']
        qpu = xacc.getAccelerator(acc_name, xacc_opts)

        if 'verbose' in xacc_opts and xacc_opts['verbose']:
            xacc.set_verbose(True)

        if 'Benchmark' not in inputParams:
            xacc.error('Invalid benchmark input - must have Benchmark description')

        if 'Observable' not in inputParams:
            xacc.error('Invalid benchmark input - must have Observable description')

        if 'Ansatz' not in inputParams:
            xacc.error('Invalid benchmark input - must have Ansatz circuit description')

        if 'Decorators' in inputParams:
            if 'readout_error' in inputParams['Decorators']:
                qpu = xacc.getAcceleratorDecorator('ro-error', qpu)

        H = None
        if inputParams['Observable']['name'] == 'pauli':
            obs_str = inputParams['Observable']['obs_str']
            H = xacc.getObservable('pauli', obs_str)
        elif inputParams['Observable']['name'] == 'fermion':
            obs_str = inputParams['Observable']['obs_str']
            H = xacc.getObservable('fermion', obs_str)

        elif inputParams['Observable']['name'] == 'psi4':
            opts = {'basis':inputParams['Observable']['basis'], 'geometry':inputParams['Observable']['geometry']}
            if 'fo' in inputParams['Observable'] and 'ao' in inputParams['Observable']:
                opts['frozen-spin-orbitals'] = ast.literal_eval(inputParams['Observable']['fo'])
                opts['active-spin-orbitals'] = ast.literal_eval(inputParams['Observable']['ao'])
            H = xacc.getObservable('psi4', opts)

        #print('Ham: ', H.toString())

        buffer = xacc.qalloc(H.nBits())
        optimizer = None
        if 'Optimizer' in inputParams:
            # check that values that can be ints/floats are
            opts = inputParams['Optimizer']
            for k,v in inputParams['Optimizer'].items():
                try:
                    i = int(v)
                    opts[k] = i
                    continue
                except:
                    pass
                try:
                    f = float(v)
                    opts[k] = f
                    continue
                except:
                    pass
            optimizer = xacc.getOptimizer(inputParams['Optimizer']['name'] if 'Optimizer' in inputParams else 'nlopt', opts)
        else:
            optimizer = xacc.getOptimizer('nlopt')

        provider = xacc.getIRProvider('quantum')

        if 'source' in inputParams['Ansatz']:
            # here assume this is xasm always
            src = inputParams['Ansatz']['source']
            xacc.qasm(src)
            # get the name of the circuit
            circuit_name = None
            for l in src.split('\n'):
                if '.circuit' in l:
                    circuit_name = l.split(' ')[1]
            ansatz = xacc.getCompiled(circuit_name)
        else:
            ansatz = provider.createInstruction(inputParams['Ansatz']['ansatz'])
            ansatz = xacc.asComposite(ansatz)

        alg = xacc.getAlgorithm(inputParams['Benchmark']['algorithm'], {
                                'ansatz': ansatz,
                                'accelerator': qpu,
                                'observable': H,
                                'optimizer': optimizer,
                                })

        alg.execute(buffer)
        return buffer
Ejemplo n.º 21
0
import xacc

# Get the QPU and allocate a single qubit
qpu = xacc.getAccelerator('local-ibm')
qbits = xacc.qalloc(2)

# Get the MLPack Optimizer, default is Adam
optimizer = xacc.getOptimizer(
    'mlpack', {'initial-parameters': [0., 0., 0., 0., 0., 0., 0., 0.]})

xacc.qasm('''
.compiler xasm
.circuit qubit2_depth1
.parameters x
.qbit q
U(q[0], x[0], -pi/2, pi/2 );
U(q[0], 0, 0, x[1]);
U(q[1], x[2], -pi/2, pi/2);
U(q[1], 0, 0, x[3]);
CNOT(q[0], q[1]);
U(q[0], 0, 0, x[4]);
U(q[0], x[5], -pi/2, pi/2);
U(q[1], 0, 0, x[6]);
U(q[1], x[7], -pi/2, pi/2);
''')

f = xacc.getCompiled('qubit2_depth1')

# Get the DDCL Algorithm, initialize it
# with necessary parameters
ddcl = xacc.getAlgorithm(
Ejemplo n.º 22
0
import xacc
xacc.set_verbose(True)

qpu = xacc.getAccelerator('qpp')
optimizer = xacc.getOptimizer('nlopt', {'nlopt-optimizer': 'l-bfgs'})
buffer = xacc.qalloc(4)

opstr = '''
(-0.165606823582,-0)  1^ 2^ 1 2 + (0.120200490713,0)  1^ 0^ 0 1 + 
(-0.0454063328691,-0)  0^ 3^ 1 2 + (0.168335986252,0)  2^ 0^ 0 2 + 
(0.0454063328691,0)  1^ 2^ 3 0 + (0.168335986252,0)  0^ 2^ 2 0 + 
(0.165606823582,0)  0^ 3^ 3 0 + (-0.0454063328691,-0)  3^ 0^ 2 1 + 
(-0.0454063328691,-0)  1^ 3^ 0 2 + (-0.0454063328691,-0)  3^ 1^ 2 0 + 
(0.165606823582,0)  1^ 2^ 2 1 + (-0.165606823582,-0)  0^ 3^ 0 3 + 
(-0.479677813134,-0)  3^ 3 + (-0.0454063328691,-0)  1^ 2^ 0 3 + 
(-0.174072892497,-0)  1^ 3^ 1 3 + (-0.0454063328691,-0)  0^ 2^ 1 3 + 
(0.120200490713,0)  0^ 1^ 1 0 + (0.0454063328691,0)  0^ 2^ 3 1 + 
(0.174072892497,0)  1^ 3^ 3 1 + (0.165606823582,0)  2^ 1^ 1 2 + 
(-0.0454063328691,-0)  2^ 1^ 3 0 + (-0.120200490713,-0)  2^ 3^ 2 3 + 
(0.120200490713,0)  2^ 3^ 3 2 + (-0.168335986252,-0)  0^ 2^ 0 2 + 
(0.120200490713,0)  3^ 2^ 2 3 + (-0.120200490713,-0)  3^ 2^ 3 2 + 
(0.0454063328691,0)  1^ 3^ 2 0 + (-1.2488468038,-0)  0^ 0 + 
(0.0454063328691,0)  3^ 1^ 0 2 + (-0.168335986252,-0)  2^ 0^ 2 0 + 
(0.165606823582,0)  3^ 0^ 0 3 + (-0.0454063328691,-0)  2^ 0^ 3 1 + 
(0.0454063328691,0)  2^ 0^ 1 3 + (-1.2488468038,-0)  2^ 2 + 
(0.0454063328691,0)  2^ 1^ 0 3 + (0.174072892497,0)  3^ 1^ 1 3 + 
(-0.479677813134,-0)  1^ 1 + (-0.174072892497,-0)  3^ 1^ 3 1 + 
(0.0454063328691,0)  3^ 0^ 1 2 + (-0.165606823582,-0)  3^ 0^ 3 0 + 
(0.0454063328691,0)  0^ 3^ 2 1 + (-0.165606823582,-0)  2^ 1^ 2 1 + 
(-0.120200490713,-0)  0^ 1^ 0 1 + (-0.120200490713,-0)  1^ 0^ 1 0 + (0.7080240981,0)
'''
Ejemplo n.º 23
0
import xacc

# Get access to the desired QPU and
# allocate some qubits to run on
qpu = xacc.getAccelerator('tnqvm', {'vqe-mode': True})
buffer = xacc.qalloc(4)

geom = '''
0 1
Na  0.000000   0.0      0.0
H   0.0        0.0  1.914388
symmetry c1
'''
fo = [0, 1, 2, 3, 4, 10, 11, 12, 13, 14]
ao = [5, 9, 15, 19]

H = xacc.getObservable(
    'psi4-frozen-core', {
        'basis': 'sto-3g',
        'geometry': geom,
        'frozen-spin-orbitals': fo,
        'active-spin-orbitals': ao
    })


@xacc.qpu(algo='vqe', accelerator=qpu, observable=H)
def ansatz(q, x):
    X(q[0])
    X(q[2])
    ucc1(q, x[0])
Ejemplo n.º 24
0
import xacc

accelerator = xacc.getAccelerator("qpp")

buffer = xacc.qalloc(4)

opstr = '''
(-0.165606823582,-0)  1^ 2^ 1 2 + (0.120200490713,0)  1^ 0^ 0 1 +
(-0.0454063328691,-0)  0^ 3^ 1 2 + (0.168335986252,0)  2^ 0^ 0 2 +
(0.0454063328691,0)  1^ 2^ 3 0 + (0.168335986252,0)  0^ 2^ 2 0 +
(0.165606823582,0)  0^ 3^ 3 0 + (-0.0454063328691,-0)  3^ 0^ 2 1 +
(-0.0454063328691,-0)  1^ 3^ 0 2 + (-0.0454063328691,-0)  3^ 1^ 2 0 +
(0.165606823582,0)  1^ 2^ 2 1 + (-0.165606823582,-0)  0^ 3^ 0 3 +
(-0.479677813134,-0)  3^ 3 + (-0.0454063328691,-0)  1^ 2^ 0 3 +
(-0.174072892497,-0)  1^ 3^ 1 3 + (-0.0454063328691,-0)  0^ 2^ 1 3 +
(0.120200490713,0)  0^ 1^ 1 0 + (0.0454063328691,0)  0^ 2^ 3 1 +
(0.174072892497,0)  1^ 3^ 3 1 + (0.165606823582,0)  2^ 1^ 1 2 +
(-0.0454063328691,-0)  2^ 1^ 3 0 + (-0.120200490713,-0)  2^ 3^ 2 3 +
(0.120200490713,0)  2^ 3^ 3 2 + (-0.168335986252,-0)  0^ 2^ 0 2 +
(0.120200490713,0)  3^ 2^ 2 3 + (-0.120200490713,-0)  3^ 2^ 3 2 +
(0.0454063328691,0)  1^ 3^ 2 0 + (-1.2488468038,-0)  0^ 0 +
(0.0454063328691,0)  3^ 1^ 0 2 + (-0.168335986252,-0)  2^ 0^ 2 0 +
(0.165606823582,0)  3^ 0^ 0 3 + (-0.0454063328691,-0)  2^ 0^ 3 1 +
(0.0454063328691,0)  2^ 0^ 1 3 + (-1.2488468038,-0)  2^ 2 +
(0.0454063328691,0)  2^ 1^ 0 3 + (0.174072892497,0)  3^ 1^ 1 3 +
(-0.479677813134,-0)  1^ 1 + (-0.174072892497,-0)  3^ 1^ 3 1 +
(0.0454063328691,0)  3^ 0^ 1 2 + (-0.165606823582,-0)  3^ 0^ 3 0 +
(0.0454063328691,0)  0^ 3^ 2 1 + (-0.165606823582,-0)  2^ 1^ 2 1 +
(-0.120200490713,-0)  0^ 1^ 0 1 + (-0.120200490713,-0)  1^ 0^ 1 0 + (0.7080240981,0)
'''
H = xacc.getObservable('fermion', opstr)
Ejemplo n.º 25
0
import xacc, sys, numpy as np

# Get access to the desired QPU and
# allocate some qubits to run on
qpu = xacc.getAccelerator('qpp', {'shots': 4096})

# In this example: we want to estimate the *phase* of an arbitrary 'oracle'
# i.e. Oracle(|State>) = exp(i*Phase)*|State>
# and we need to estimate that Phase.

# The oracle is a simple T gate, and the eigenstate is |1>
# T|1> = e^(i*pi/4)|1>
# The phase value of pi/4 = 2pi * (1/8)
# i.e. if we use a 3-bit register for estimation,
# we will get the correct answer of 1 deterministically.

xacc.qasm('''.compiler xasm
.circuit oracle
.qbit q
T(q[0]);
''')
oracle = xacc.getCompiled('oracle')

# We need to prepare the eigenstate |1>
xacc.qasm('''.compiler xasm
.circuit prep
.qbit q
X(q[0]);
''')
statePrep = xacc.getCompiled('prep')
Ejemplo n.º 26
0
import xacc
xacc.set_verbose(True)

# Get access to the desired QPU and
# allocate some qubits to run on
qpu = xacc.getAccelerator('aer', {'vqe-mode': True})
buffer = xacc.qalloc(4)

geom = '''
0 1
Na  0.000000   0.0      0.0
H   0.0        0.0  1.914388
symmetry c1
'''
fo = [0, 1, 2, 3, 4, 10, 11, 12, 13, 14]
ao = [5, 9, 15, 19]

H = xacc.getObservable(
    'psi4', {
        'basis': 'sto-3g',
        'geometry': geom,
        'frozen-spin-orbitals': fo,
        'active-spin-orbitals': ao
    })


@xacc.qpu(algo='vqe', accelerator=qpu, observable=H)
def ansatz(q, x):
    X(q[0])
    X(q[2])
    ucc1(q, x[0])
Ejemplo n.º 27
0
    Rz(q[0], -pi/2);
}
H(q[0]);
Measure(q[0], c[2]);
Reset(q[0]);
H(q[0]);
CPhase(q[0], q[1], -5*pi/8);
if(c[0]) {
    Rz(q[0], -pi/8);
}
if(c[1]) {
    Rz(q[0], -pi/4);
}
if(c[2]) {
    Rz(q[0], -pi/2);
}
H(q[0]);
Measure(q[0], c[3]);
''')

f = xacc.getCompiled('iterative_qpe')
print(f.toString())
# qpu = xacc.getAccelerator('qpp', {'shots':1024})
qpu = xacc.getAccelerator('aer', {'shots': 1024})
# With noise
# Note: IBMQ doesn't support bfunc (conditional) instruction atm,
# hence, we can only do simulation of the QObj.
# qpu = xacc.getAccelerator('aer:ibmq_manhattan', {'shots':1024})
q = xacc.qalloc(2)
qpu.execute(q, f)
print(q)
Ejemplo n.º 28
0
    def execute(self, inputParams):
        """
        This method is intended to be inherited by vqe and vqe_energy subclasses to allow algorithm-specific implementation.
        This superclass method adds extra information to the buffer and allows XACC settings options to be set before executing VQE.

        Parameters:
        inputParams : dictionary
                    a dictionary of input parameters obtained from .ini file

        return QPU Accelerator buffer

        Options used (obtained from inputParams):
            'qubit-map': map of logical qubits to physical qubits
            'n-execs': number of sampler executions of measurements
            'initial-parameters': list of initial parameters for the VQE algorithm

            'restart-from-file': AcceleratorDecorator option to allow restart of VQE algorithm
            'readout-error': AcceleratorDecorator option for readout-error mitigation

        """
        self.qpu = xacc.getAccelerator(inputParams['accelerator'])
        xaccOp = self.hamiltonian_generators[
            inputParams['hamiltonian-generator']].generate(inputParams)
        self.ansatz = self.ansatz_generators[inputParams['name']].generate(
            inputParams, xaccOp.nQubits())
        if 'qubit-map' in inputParams:
            qubit_map = ast.literal_eval(inputParams['qubit-map'])
            xaccOp, self.ansatz, n_qubits = xaccvqe.mapToPhysicalQubits(
                xaccOp, self.ansatz, qubit_map)
        else:
            n_qubits = xaccOp.nQubits()
        self.op = xaccOp
        self.n_qubits = n_qubits
        self.buffer = self.qpu.createBuffer('q', n_qubits)
        self.buffer.addExtraInfo('hamiltonian', str(xaccOp))
        self.buffer.addExtraInfo(
            'ansatz-qasm',
            self.ansatz.toString('q').replace('\\n', '\\\\n'))
        pycompiler = xacc.getCompiler('xacc-py')
        self.buffer.addExtraInfo(
            'ansatz-qasm-py',
            '\n'.join(pycompiler.translate('q', self.ansatz).split('\n')[1:]))
        self.optimizer = None
        self.optimizer_options = {}
        if 'optimizer' in inputParams:
            if inputParams['optimizer'] in self.vqe_optimizers:
                self.optimizer = self.vqe_optimizers[inputParams['optimizer']]
                if 'method' in inputParams:
                    self.optimizer_options['method'] = inputParams['method']
                if 'options' in inputParams:
                    self.optimizer_options['options'] = ast.literal_eval(
                        inputParams['options'])
                if 'user-params' in inputParams:
                    self.optimizer_options['options'][
                        'user_params'] = ast.literal_eval(
                            inputParams['user-params'])
            else:
                xacc.setOption('vqe-backend', inputParams['optimizer'])
        else:
            xacc.info(
                "No classical optimizer specified. Setting to default XACC optimizer."
            )

        self.buffer.addExtraInfo('accelerator', inputParams['accelerator'])
        if 'n-execs' in inputParams:
            xacc.setOption('sampler-n-execs', inputParams['n-execs'])
            self.qpu = xacc.getAcceleratorDecorator('improved-sampling',
                                                    self.qpu)

        if 'restart-from-file' in inputParams:
            xacc.setOption('vqe-restart-file',
                           inputParams['restart-from-file'])
            self.qpu = xacc.getAcceleratorDecorator('vqe-restart', self.qpu)
            self.qpu.initialize()

        if 'readout-error' in inputParams and inputParams['readout-error']:
            self.qpu = xacc.getAcceleratorDecorator('ro-error', self.qpu)

        if 'rdm-purification' in inputParams and inputParams[
                'rdm-purification']:
            self.qpu = xacc.getAcceleratorDecorator('rdm-purification',
                                                    self.qpu)

        self.vqe_options_dict = {
            'accelerator': self.qpu,
            'ansatz': self.ansatz
        }

        if 'initial-parameters' in inputParams:
            self.vqe_options_dict['vqe-params'] = ','.join([
                str(x)
                for x in ast.literal_eval(inputParams['initial-parameters'])
            ])

        xacc.setOptions(inputParams)
Ejemplo n.º 29
0
program.addInstruction(gaussian)


# Measure instructions (to be lowered to pulses)
m0 = provider.createInstruction("Measure", [0])
m1 = provider.createInstruction("Measure", [1])
m2 = provider.createInstruction("Measure", [2])
m3 = provider.createInstruction("Measure", [3])
m4 = provider.createInstruction("Measure", [4])

program.addInstruction(m0)
program.addInstruction(m1)
program.addInstruction(m2)
program.addInstruction(m3)
program.addInstruction(m4)

# Execute on the Aer simulator (bogota 5-qubit device)
qpu = xacc.getAccelerator("aer:ibmq_bogota", {"sim-type": "pulse"})
buffer = xacc.qalloc(5)
qpu.execute(buffer, program)

# print(buffer)

# Aer simulator will also return the state vector:
# Note: it looks like the state-vector is in the qutrit space...
# and the leaked state |2> is measured as 0.
state_vec = buffer.getInformation("state")
print(len(state_vec))


Ejemplo n.º 30
0
import xacc
import numpy as np

qpu = xacc.getAccelerator('aer', {'readout_error': True, 'shots': 4096,\
                                  'backend':'ibmq_20_tokyo'})
qbits = xacc.qalloc(3)
layout = np.array([1, 2, 3], dtype=np.uintp)
decorator = xacc.getAcceleratorDecorator('assignment-error-kernel', qpu, {
    'gen-kernel': True,
    'layout': layout
})

xacc.qasm('''
.compiler xasm
.circuit foo
.qbit q
H(q[0]);
H(q[1]);
CNOT(q[0], q[2]);
CNOT(q[1], q[2]);
Measure(q[0]);
Measure(q[1]);
Measure(q[2]);
''')

ansatz = xacc.getCompiled('foo')

decorator.execute(qbits, ansatz)

print(qbits)