Ejemplo n.º 1
0
 def test_incompatible_attributes(self):
     invalid_vars = [
         Variable(['t'], pd.date_range('2000-01-01', periods=3),
                  {'units': 'foobar'}),
         Variable(['t'], pd.to_timedelta(['1 day']), {'units': 'foobar'}),
         Variable(['t'], [0, 1, 2], {'add_offset': 0}, {'add_offset': 2}),
         Variable(['t'], [0, 1, 2], {'_FillValue': 0}, {'_FillValue': 2}),
     ]
     for var in invalid_vars:
         with self.assertRaises(ValueError):
             conventions.encode_cf_variable(var)
Ejemplo n.º 2
0
 def test_incompatible_attributes(self):
     invalid_vars = [
         Variable(['t'], pd.date_range('2000-01-01', periods=3),
                  {'units': 'foobar'}),
         Variable(['t'], pd.to_timedelta(['1 day']), {'units': 'foobar'}),
         Variable(['t'], [0, 1, 2], {'add_offset': 0}, {'add_offset': 2}),
         Variable(['t'], [0, 1, 2], {'_FillValue': 0}, {'_FillValue': 2}),
     ]
     for var in invalid_vars:
         with pytest.raises(ValueError):
             conventions.encode_cf_variable(var)
Ejemplo n.º 3
0
 def test_incompatible_attributes(self):
     invalid_vars = [
         Variable(["t"], pd.date_range("2000-01-01", periods=3),
                  {"units": "foobar"}),
         Variable(["t"], pd.to_timedelta(["1 day"]), {"units": "foobar"}),
         Variable(["t"], [0, 1, 2], {"add_offset": 0}, {"add_offset": 2}),
         Variable(["t"], [0, 1, 2], {"_FillValue": 0}, {"_FillValue": 2}),
     ]
     for var in invalid_vars:
         with pytest.raises(ValueError):
             conventions.encode_cf_variable(var)
Ejemplo n.º 4
0
    def to_raster(self, xarray_dataarray, tags, windowed, lock, compute,
                  **kwargs):
        """
        This method writes to the raster on disk.

        xarray_dataarray: xarray.DataArray
            The input data array to write to disk.
        tags: dict, optional
            A dictionary of tags to write to the raster.
        windowed: bool
            If True and the data array is not a dask array, it will write
            the data to disk using rasterio windows.
        lock: boolean or Lock, optional
            Lock to use to write data using dask.
            If not supplied, it will use a single process.
        compute: bool
            If True (default) and data is a dask array, then compute and save
            the data immediately. If False, return a dask Delayed object.
            Call ".compute()" on the Delayed object to compute the result
            later. Call ``dask.compute(delayed1, delayed2)`` to save
            multiple delayed files at once.
        **kwargs
            Keyword arguments to pass into writing the raster.
        """
        dtype = kwargs["dtype"]
        # generate initial output file
        with rasterio.open(self.raster_path, "w", **kwargs) as rds:
            _write_metatata_to_raster(rds, xarray_dataarray, tags)
            if not (lock and is_dask_collection(xarray_dataarray.data)):
                # write data to raster immmediately if not dask array
                if windowed:
                    window_iter = rds.block_windows(1)
                else:
                    window_iter = [(None, None)]
                for _, window in window_iter:
                    if window is not None:
                        out_data = xarray_dataarray.rio.isel_window(window)
                    else:
                        out_data = xarray_dataarray
                    data = encode_cf_variable(out_data).values.astype(dtype)
                    if data.ndim == 2:
                        rds.write(data, 1, window=window)
                    else:
                        rds.write(data, window=window)

        if lock and is_dask_collection(xarray_dataarray.data):
            return dask.array.store(
                encode_cf_variable(xarray_dataarray).data.astype(dtype),
                self,
                lock=lock,
                compute=compute,
            )
        return None
Ejemplo n.º 5
0
 def test_string_object_warning(self):
     original = Variable(
         ('x',), np.array([u'foo', u'bar'], dtype=object)).chunk()
     with pytest.warns(SerializationWarning,
                       match='dask array with dtype=object'):
         encoded = conventions.encode_cf_variable(original)
     assert_identical(original, encoded)
Ejemplo n.º 6
0
 def test_string_object_warning(self):
     original = Variable(('x', ), np.array([u'foo', u'bar'],
                                           dtype=object)).chunk()
     with pytest.warns(SerializationWarning,
                       match='dask array with dtype=object'):
         encoded = conventions.encode_cf_variable(original)
     assert_identical(original, encoded)
Ejemplo n.º 7
0
 def test_string_object_warning(self):
     original = Variable(("x", ), np.array(["foo", "bar"],
                                           dtype=object)).chunk()
     with pytest.warns(SerializationWarning,
                       match="dask array with dtype=object"):
         encoded = conventions.encode_cf_variable(original)
     assert_identical(original, encoded)
Ejemplo n.º 8
0
def test_encode_decode_roundtrip_cftime(freq):
    initial_time = cftime_range("0001", periods=1)
    times = initial_time.append(
        cftime_range("0001", periods=2, freq=freq) +
        timedelta(days=291000 * 365))
    variable = Variable(["time"], times)
    encoded = conventions.encode_cf_variable(variable)
    decoded = conventions.decode_cf_variable("time", encoded, use_cftime=True)
    assert_equal(variable, decoded)
Ejemplo n.º 9
0
def test_encode_decode_roundtrip_datetime64(freq):
    # See GH 4045. Prior to GH 4684 this test would fail for frequencies of
    # "S", "L", "U", and "N".
    initial_time = pd.date_range("1678-01-01", periods=1)
    times = initial_time.append(pd.date_range("1968", periods=2, freq=freq))
    variable = Variable(["time"], times)
    encoded = conventions.encode_cf_variable(variable)
    decoded = conventions.decode_cf_variable("time", encoded)
    assert_equal(variable, decoded)
Ejemplo n.º 10
0
def test_CFMaskCoder_encode_missing_fill_values_conflict(data, encoding):
    original = xr.Variable(("x", ), data, encoding=encoding)
    encoded = encode_cf_variable(original)

    assert encoded.dtype == encoded.attrs["missing_value"].dtype
    assert encoded.dtype == encoded.attrs["_FillValue"].dtype

    with pytest.warns(variables.SerializationWarning):
        roundtripped = decode_cf_variable("foo", encoded)
        assert_identical(roundtripped, original)
Ejemplo n.º 11
0
def test_decode_encode_roundtrip_with_non_lowercase_letters(calendar):
    # See GH 5093.
    times = [0, 1]
    units = "days since 2000-01-01"
    attrs = {"calendar": calendar, "units": units}
    variable = Variable(["time"], times, attrs)
    decoded = conventions.decode_cf_variable("time", variable)
    encoded = conventions.encode_cf_variable(decoded)

    # Previously this would erroneously be an array of cftime.datetime
    # objects.  We check here that it is decoded properly to np.datetime64.
    assert np.issubdtype(decoded.dtype, np.datetime64)

    # Use assert_identical to ensure that the calendar attribute maintained its
    # original form throughout the roundtripping process, uppercase letters and
    # all.
    assert_identical(variable, encoded)
Ejemplo n.º 12
0
 def test_missing_fillvalue(self):
     v = Variable(['x'], np.array([np.nan, 1, 2, 3]))
     v.encoding = {'dtype': 'int16'}
     with self.assertWarns('floating point data as an integer'):
         conventions.encode_cf_variable(v)
Ejemplo n.º 13
0
 def test_missing_fillvalue(self):
     v = Variable(['x'], np.array([np.nan, 1, 2, 3]))
     v.encoding = {'dtype': 'int16'}
     with pytest.warns(Warning, match='floating point data as an integer'):
         conventions.encode_cf_variable(v)
Ejemplo n.º 14
0
 def test_missing_fillvalue(self) -> None:
     v = Variable(["x"], np.array([np.nan, 1, 2, 3]))
     v.encoding = {"dtype": "int16"}
     with pytest.warns(Warning, match="floating point data as an integer"):
         conventions.encode_cf_variable(v)
Ejemplo n.º 15
0
    def to_raster(self, xarray_dataarray, tags, windowed, lock, compute, **kwargs):
        """
        This method writes to the raster on disk.

        xarray_dataarray: xarray.DataArray
            The input data array to write to disk.
        tags: dict, optional
            A dictionary of tags to write to the raster.
        windowed: bool
            If True and the data array is not a dask array, it will write
            the data to disk using rasterio windows.
        lock: boolean or Lock, optional
            Lock to use to write data using dask.
            If not supplied, it will use a single process.
        compute: bool
            If True (default) and data is a dask array, then compute and save
            the data immediately. If False, return a dask Delayed object.
            Call ".compute()" on the Delayed object to compute the result
            later. Call ``dask.compute(delayed1, delayed2)`` to save
            multiple delayed files at once.
        dtype: np.dtype
            Numpy-compliant dtype used to save raster. If data is not already
            represented by this dtype in memory it is recast. dtype='complex_int16'
            is a special case to write in-memory np.complex64 to CInt16.
        **kwargs
            Keyword arguments to pass into writing the raster.
        """
        kwargs["dtype"], numpy_dtype = _get_dtypes(
            kwargs["dtype"],
            xarray_dataarray.encoding.get("rasterio_dtype"),
            xarray_dataarray.encoding.get("dtype", str(xarray_dataarray.dtype)),
        )

        if kwargs["nodata"] is not None:
            # Ensure dtype of output data matches the expected dtype.
            # This check is added here as the dtype of the data is
            # converted right before writing.
            kwargs["nodata"] = _ensure_nodata_dtype(kwargs["nodata"], numpy_dtype)

        with rasterio.open(self.raster_path, "w", **kwargs) as rds:
            _write_metatata_to_raster(rds, xarray_dataarray, tags)
            if not (lock and is_dask_collection(xarray_dataarray.data)):
                # write data to raster immmediately if not dask array
                if windowed:
                    window_iter = rds.block_windows(1)
                else:
                    window_iter = [(None, None)]
                for _, window in window_iter:
                    if window is not None:
                        out_data = xarray_dataarray.rio.isel_window(window)
                    else:
                        out_data = xarray_dataarray
                    data = encode_cf_variable(out_data).values.astype(numpy_dtype)
                    if data.ndim == 2:
                        rds.write(data, 1, window=window)
                    else:
                        rds.write(data, window=window)

        if lock and is_dask_collection(xarray_dataarray.data):
            return dask.array.store(
                encode_cf_variable(xarray_dataarray).data.astype(numpy_dtype),
                self,
                lock=lock,
                compute=compute,
            )
        return None