Ejemplo n.º 1
0
def generate_meta_info(save_dir, max_node, divide=40):
    aa_nas_bench_ss = get_search_spaces("cell", "nas-bench-201")
    archs = CellStructure.gen_all(aa_nas_bench_ss, max_node, False)
    print("There are {:} archs vs {:}.".format(
        len(archs),
        len(aa_nas_bench_ss)**((max_node - 1) * max_node / 2)))

    random.seed(88)  # please do not change this line for reproducibility
    random.shuffle(archs)
    # to test fixed-random shuffle
    # print ('arch [0] : {:}\n---->>>>   {:}'.format( archs[0], archs[0].tostr() ))
    # print ('arch [9] : {:}\n---->>>>   {:}'.format( archs[9], archs[9].tostr() ))
    assert (
        archs[0].tostr() ==
        "|avg_pool_3x3~0|+|nor_conv_1x1~0|skip_connect~1|+|nor_conv_1x1~0|skip_connect~1|skip_connect~2|"
    ), "please check the 0-th architecture : {:}".format(archs[0])
    assert (
        archs[9].tostr() ==
        "|avg_pool_3x3~0|+|none~0|none~1|+|skip_connect~0|none~1|nor_conv_3x3~2|"
    ), "please check the 9-th architecture : {:}".format(archs[9])
    assert (
        archs[123].tostr() ==
        "|avg_pool_3x3~0|+|avg_pool_3x3~0|nor_conv_1x1~1|+|none~0|avg_pool_3x3~1|nor_conv_3x3~2|"
    ), "please check the 123-th architecture : {:}".format(archs[123])
    total_arch = len(archs)

    num = 50000
    indexes_5W = list(range(num))
    random.seed(1021)
    random.shuffle(indexes_5W)
    train_split = sorted(list(set(indexes_5W[:num // 2])))
    valid_split = sorted(list(set(indexes_5W[num // 2:])))
    assert len(train_split) + len(valid_split) == num
    assert (train_split[0] == 0 and train_split[10] == 26
            and train_split[111] == 203 and valid_split[0] == 1
            and valid_split[10] == 18
            and valid_split[111] == 242), "{:} {:} {:} - {:} {:} {:}".format(
                train_split[0],
                train_split[10],
                train_split[111],
                valid_split[0],
                valid_split[10],
                valid_split[111],
            )
    splits = {num: {"train": train_split, "valid": valid_split}}

    info = {
        "archs": [x.tostr() for x in archs],
        "total": total_arch,
        "max_node": max_node,
        "splits": splits,
    }

    save_dir = Path(save_dir)
    save_dir.mkdir(parents=True, exist_ok=True)
    save_name = save_dir / "meta-node-{:}.pth".format(max_node)
    assert not save_name.exists(), "{:} already exist".format(save_name)
    torch.save(info, save_name)
    print("save the meta file into {:}".format(save_name))
Ejemplo n.º 2
0
def traverse_net(max_node):
    aa_nas_bench_ss = get_search_spaces("cell", "nats-bench")
    archs = CellStructure.gen_all(aa_nas_bench_ss, max_node, False)
    print("There are {:} archs vs {:}.".format(
        len(archs),
        len(aa_nas_bench_ss)**((max_node - 1) * max_node / 2)))

    random.seed(88)  # please do not change this line for reproducibility
    random.shuffle(archs)
    assert (
        archs[0].tostr() ==
        "|avg_pool_3x3~0|+|nor_conv_1x1~0|skip_connect~1|+|nor_conv_1x1~0|skip_connect~1|skip_connect~2|"
    ), "please check the 0-th architecture : {:}".format(archs[0])
    assert (
        archs[9].tostr() ==
        "|avg_pool_3x3~0|+|none~0|none~1|+|skip_connect~0|none~1|nor_conv_3x3~2|"
    ), "please check the 9-th architecture : {:}".format(archs[9])
    assert (
        archs[123].tostr() ==
        "|avg_pool_3x3~0|+|avg_pool_3x3~0|nor_conv_1x1~1|+|none~0|avg_pool_3x3~1|nor_conv_3x3~2|"
    ), "please check the 123-th architecture : {:}".format(archs[123])
    return [x.tostr() for x in archs]
Ejemplo n.º 3
0
def generate_meta_info(save_dir, max_node, divide=40):
    aa_nas_bench_ss = get_search_spaces("cell", "nas-bench-201")
    archs = CellStructure.gen_all(aa_nas_bench_ss, max_node, False)
    print("There are {:} archs vs {:}.".format(
        len(archs),
        len(aa_nas_bench_ss)**((max_node - 1) * max_node / 2)))

    random.seed(88)  # please do not change this line for reproducibility
    random.shuffle(archs)
    # to test fixed-random shuffle
    # print ('arch [0] : {:}\n---->>>>   {:}'.format( archs[0], archs[0].tostr() ))
    # print ('arch [9] : {:}\n---->>>>   {:}'.format( archs[9], archs[9].tostr() ))
    assert (
        archs[0].tostr() ==
        "|avg_pool_3x3~0|+|nor_conv_1x1~0|skip_connect~1|+|nor_conv_1x1~0|skip_connect~1|skip_connect~2|"
    ), "please check the 0-th architecture : {:}".format(archs[0])
    assert (
        archs[9].tostr() ==
        "|avg_pool_3x3~0|+|none~0|none~1|+|skip_connect~0|none~1|nor_conv_3x3~2|"
    ), "please check the 9-th architecture : {:}".format(archs[9])
    assert (
        archs[123].tostr() ==
        "|avg_pool_3x3~0|+|avg_pool_3x3~0|nor_conv_1x1~1|+|none~0|avg_pool_3x3~1|nor_conv_3x3~2|"
    ), "please check the 123-th architecture : {:}".format(archs[123])
    total_arch = len(archs)

    num = 50000
    indexes_5W = list(range(num))
    random.seed(1021)
    random.shuffle(indexes_5W)
    train_split = sorted(list(set(indexes_5W[:num // 2])))
    valid_split = sorted(list(set(indexes_5W[num // 2:])))
    assert len(train_split) + len(valid_split) == num
    assert (train_split[0] == 0 and train_split[10] == 26
            and train_split[111] == 203 and valid_split[0] == 1
            and valid_split[10] == 18
            and valid_split[111] == 242), "{:} {:} {:} - {:} {:} {:}".format(
                train_split[0],
                train_split[10],
                train_split[111],
                valid_split[0],
                valid_split[10],
                valid_split[111],
            )
    splits = {num: {"train": train_split, "valid": valid_split}}

    info = {
        "archs": [x.tostr() for x in archs],
        "total": total_arch,
        "max_node": max_node,
        "splits": splits,
    }

    save_dir = Path(save_dir)
    save_dir.mkdir(parents=True, exist_ok=True)
    save_name = save_dir / "meta-node-{:}.pth".format(max_node)
    assert not save_name.exists(), "{:} already exist".format(save_name)
    torch.save(info, save_name)
    print("save the meta file into {:}".format(save_name))

    script_name_full = save_dir / "BENCH-201-N{:}.opt-full.script".format(
        max_node)
    script_name_less = save_dir / "BENCH-201-N{:}.opt-less.script".format(
        max_node)
    full_file = open(str(script_name_full), "w")
    less_file = open(str(script_name_less), "w")
    gaps = total_arch // divide
    for start in range(0, total_arch, gaps):
        xend = min(start + gaps, total_arch)
        full_file.write(
            "bash ./scripts-search/NAS-Bench-201/train-models.sh 0 {:5d} {:5d} -1 '777 888 999'\n"
            .format(start, xend - 1))
        less_file.write(
            "bash ./scripts-search/NAS-Bench-201/train-models.sh 1 {:5d} {:5d} -1 '777 888 999'\n"
            .format(start, xend - 1))
    print("save the training script into {:} and {:}".format(
        script_name_full, script_name_less))
    full_file.close()
    less_file.close()

    script_name = save_dir / "meta-node-{:}.cal-script.txt".format(max_node)
    macro = "OMP_NUM_THREADS=6 CUDA_VISIBLE_DEVICES=0"
    with open(str(script_name), "w") as cfile:
        for start in range(0, total_arch, gaps):
            xend = min(start + gaps, total_arch)
            cfile.write(
                "{:} python exps/NAS-Bench-201/statistics.py --mode cal --target_dir {:06d}-{:06d}-C16-N5\n"
                .format(macro, start, xend - 1))
    print("save the post-processing script into {:}".format(script_name))