Ejemplo n.º 1
0
def check_hours(tickers, tz_exch, tz_loc=DEFAULT_TZ):
    """
    Check exchange hours for tickers

    Args:
        tickers: list of tickers
        tz_exch: exchange timezone
        tz_loc: local timezone

    Returns:
        Local and exchange hours
    """
    cols = ['Trading_Day_Start_Time_EOD', 'Trading_Day_End_Time_EOD']
    con, _ = create_connection()
    hours = con.ref(tickers=tickers, flds=cols)
    cur_dt = pd.Timestamp('today').strftime('%Y-%m-%d ')
    hours.loc[:, 'local'] = hours.value.astype(str).str[:-3]
    hours.loc[:, 'exch'] = pd.DatetimeIndex(
        cur_dt + hours.value.astype(str)
    ).tz_localize(tz_loc).tz_convert(tz_exch).strftime('%H:%M')

    hours = pd.concat([
        hours.set_index(['ticker', 'field']).exch.unstack().loc[:, cols],
        hours.set_index(['ticker', 'field']).local.unstack().loc[:, cols],
    ], axis=1)
    hours.columns = ['Exch_Start', 'Exch_End', 'Local_Start', 'Local_End']

    return hours
Ejemplo n.º 2
0
def bdp(tickers, flds, cache=False, **kwargs):
    """
    Get reference data and save to

    Args:
        tickers: tickers
        flds: fields to query
        cache: bool - use cache to store data
        **kwargs: overrides

    Returns:
        pd.DataFrame

    Examples:
        >>> bdp('IQ US Equity', 'Crncy', raw=True)
                 ticker  field value
        0  IQ US Equity  Crncy   USD
        >>> bdp('IQ US Equity', 'Crncy').reset_index()
                 ticker crncy
        0  IQ US Equity   USD
    """
    logger = logs.get_logger(bdp, level=kwargs.pop('log', logs.LOG_LEVEL))
    con, _ = create_connection()
    ovrds = assist.proc_ovrds(**kwargs)

    logger.info(
        f'loading reference data from Bloomberg:\n'
        f'{assist.info_qry(tickers=tickers, flds=flds)}'
    )
    data = con.ref(tickers=tickers, flds=flds, ovrds=ovrds)
    if not cache: return [data]

    qry_data = []
    for r, snap in data.iterrows():
        subset = [r]
        data_file = storage.ref_file(
            ticker=snap.ticker, fld=snap.field, ext='pkl', cache=cache, **kwargs
        )
        if data_file:
            if not files.exists(data_file): qry_data.append(data.iloc[subset])
            files.create_folder(data_file, is_file=True)
            data.iloc[subset].to_pickle(data_file)

    return qry_data
Ejemplo n.º 3
0
def bds(tickers, flds, cache=False, **kwargs):
    """
    Download block data from Bloomberg

    Args:
        tickers: ticker(s)
        flds: field(s)
        cache: whether read from cache
        **kwargs: other overrides for query
          -> raw: raw output from `pdbdp` library, default False

    Returns:
        pd.DataFrame: block data

    Examples:
        >>> import os
        >>>
        >>> pd.options.display.width = 120
        >>> s_dt, e_dt = '20180301', '20181031'
        >>> dvd = bds(
        ...     'NVDA US Equity', 'DVD_Hist_All',
        ...     DVD_Start_Dt=s_dt, DVD_End_Dt=e_dt, raw=True,
        ... )
        >>> dvd.loc[:, ['ticker', 'name', 'value']].head(8)
                   ticker                name         value
        0  NVDA US Equity       Declared Date    2018-08-16
        1  NVDA US Equity             Ex-Date    2018-08-29
        2  NVDA US Equity         Record Date    2018-08-30
        3  NVDA US Equity        Payable Date    2018-09-21
        4  NVDA US Equity     Dividend Amount          0.15
        5  NVDA US Equity  Dividend Frequency       Quarter
        6  NVDA US Equity       Dividend Type  Regular Cash
        7  NVDA US Equity       Declared Date    2018-05-10
        >>> dvd = bds(
        ...     'NVDA US Equity', 'DVD_Hist_All',
        ...     DVD_Start_Dt=s_dt, DVD_End_Dt=e_dt,
        ... )
        >>> dvd.reset_index().loc[:, ['ticker', 'ex_date', 'dividend_amount']]
                   ticker     ex_date  dividend_amount
        0  NVDA US Equity  2018-08-29             0.15
        1  NVDA US Equity  2018-05-23             0.15
        >>> if not os.environ.get('BBG_ROOT', ''):
        ...     os.environ['BBG_ROOT'] = f'{files.abspath(__file__, 1)}/tests/data'
        >>> idx_kw = dict(End_Dt='20181220', cache=True)
        >>> idx_wt = bds('DJI Index', 'Indx_MWeight_Hist', **idx_kw)
        >>> idx_wt.round(2).tail().reset_index(drop=True)
          index_member  percent_weight
        0         V UN            3.82
        1        VZ UN            1.63
        2       WBA UW            2.06
        3       WMT UN            2.59
        4       XOM UN            2.04
        >>> idx_wt = bds('DJI Index', 'Indx_MWeight_Hist', **idx_kw)
        >>> idx_wt.round(2).head().reset_index(drop=True)
          index_member  percent_weight
        0      AAPL UW            4.65
        1       AXP UN            2.84
        2        BA UN            9.29
        3       CAT UN            3.61
        4      CSCO UW            1.26
    """
    logger = logs.get_logger(bds, level=kwargs.pop('log', logs.LOG_LEVEL))
    has_date = kwargs.pop('has_date', True)
    con, _ = create_connection()
    ovrds = assist.proc_ovrds(**kwargs)

    logger.info(
        f'loading block data from Bloomberg:\n'
        f'{assist.info_qry(tickers=tickers, flds=flds)}'
    )
    data = con.bulkref(tickers=tickers, flds=flds, ovrds=ovrds)
    if not cache: return [data]

    qry_data = []
    for (ticker, fld), grp in data.groupby(['ticker', 'field']):
        data_file = storage.ref_file(
            ticker=ticker, fld=fld, has_date=has_date, ext='pkl', cache=cache, **kwargs
        )
        if data_file:
            if not files.exists(data_file): qry_data.append(grp)
            files.create_folder(data_file, is_file=True)
            grp.reset_index(drop=True).to_pickle(data_file)

    return qry_data
Ejemplo n.º 4
0
def bdib(ticker, dt, typ='TRADE', batch=False, log=logs.LOG_LEVEL) -> pd.DataFrame:
    """
    Download intraday data and save to cache

    Args:
        ticker: ticker name
        dt: date to download
        typ: [TRADE, BID, ASK, BID_BEST, ASK_BEST, BEST_BID, BEST_ASK]
        batch: whether is batch process to download data
        log: level of logs

    Returns:
        pd.DataFrame
    """
    from xbbg.core import missing

    logger = logs.get_logger(bdib, level=log)

    t_1 = pd.Timestamp('today').date() - pd.Timedelta('1D')
    whole_day = pd.Timestamp(dt).date() < t_1
    if (not whole_day) and batch:
        logger.warning(f'querying date {t_1} is too close, ignoring download ...')
        return pd.DataFrame()

    cur_dt = pd.Timestamp(dt).strftime('%Y-%m-%d')
    asset = ticker.split()[-1]
    info_log = f'{ticker} / {cur_dt} / {typ}'

    if asset in ['Equity', 'Curncy', 'Index', 'Comdty']:
        exch = const.exch_info(ticker=ticker)
        if exch.empty: return pd.DataFrame()
    else:
        logger.error(f'unknown asset type: {asset}')
        return pd.DataFrame()

    time_fmt = '%Y-%m-%dT%H:%M:%S'
    time_idx = pd.DatetimeIndex([
        f'{cur_dt} {exch.allday[0]}', f'{cur_dt} {exch.allday[-1]}']
    ).tz_localize(exch.tz).tz_convert(DEFAULT_TZ).tz_convert('UTC')
    if time_idx[0] > time_idx[1]: time_idx -= pd.TimedeltaIndex(['1D', '0D'])

    q_tckr = ticker
    if exch.get('is_fut', False):
        if 'freq' not in exch:
            logger.error(f'[freq] missing in info for {info_log} ...')

        is_sprd = exch.get('has_sprd', False) and (len(ticker[:-1]) != exch['tickers'][0])
        if not is_sprd:
            q_tckr = fut_ticker(gen_ticker=ticker, dt=dt, freq=exch['freq'])
            if q_tckr == '':
                logger.error(f'cannot find futures ticker for {ticker} ...')
                return pd.DataFrame()

    info_log = f'{q_tckr} / {cur_dt} / {typ}'
    miss_kw = dict(ticker=ticker, dt=dt, typ=typ, func='bdib')
    cur_miss = missing.current_missing(**miss_kw)
    if cur_miss >= 2:
        if batch: return pd.DataFrame()
        logger.info(f'{cur_miss} trials with no data {info_log}')
        return pd.DataFrame()

    logger.info(f'loading data from Bloomberg: {info_log} ...')
    con, _ = create_connection()
    data = con.bdib(
        ticker=q_tckr, event_type=typ, interval=1,
        start_datetime=time_idx[0].strftime(time_fmt),
        end_datetime=time_idx[1].strftime(time_fmt),
    )

    if not isinstance(data, pd.DataFrame):
        raise ValueError(f'unknown output format: {type(data)}')

    if data.empty:
        logger.warning(f'no data for {info_log} ...')
        missing.update_missing(**miss_kw)
        return pd.DataFrame()

    data = data.tz_localize('UTC').tz_convert(exch.tz)
    storage.save_intraday(data=data, ticker=ticker, dt=dt, typ=typ)

    return pd.DataFrame() if batch else assist.format_intraday(data=data, ticker=ticker)
Ejemplo n.º 5
0
def bdh(tickers, flds, start_date, end_date='today', adjust=None, **kwargs):
    """
    Bloomberg historical data

    Args:
        tickers: ticker(s)
        flds: field(s)
        start_date: start date
        end_date: end date - default today
        adjust: `all`, `dvd`, `normal`, `abn` (=abnormal), `split`, `-` or None
                exact match of above words will adjust for corresponding events
                Case 0: `-` no adjustment for dividend or split
                Case 1: `dvd` or `normal|abn` will adjust for all dividends except splits
                Case 2: `adjust` will adjust for splits and ignore all dividends
                Case 3: `all` == `dvd|split` == adjust for all
                Case 4: None == Bloomberg default OR use kwargs
        **kwargs: overrides

    Returns:
        pd.DataFrame

    Examples:
        >>> bdh(
        ...     tickers='VIX Index', flds=['High', 'Low', 'Last_Price'],
        ...     start_date='2018-02-05', end_date='2018-02-07',
        ... ).round(2).transpose().rename_axis((None, None))
                              2018-02-05  2018-02-06  2018-02-07
        VIX Index High             38.80       50.30       31.64
                  Low              16.80       22.42       21.17
                  Last_Price       37.32       29.98       27.73
        >>> bdh(
        ...     tickers='AAPL US Equity', flds='Px_Last',
        ...     start_date='20140605', end_date='20140610', adjust='-'
        ... ).round(2)
        ticker     AAPL US Equity
        field             Px_Last
        2014-06-05         647.35
        2014-06-06         645.57
        2014-06-09          93.70
        2014-06-10          94.25
        >>> bdh(
        ...     tickers='AAPL US Equity', flds='Px_Last',
        ...     start_date='20140606', end_date='20140609',
        ...     CshAdjNormal=False, CshAdjAbnormal=False, CapChg=False,
        ... ).round(2)
        ticker     AAPL US Equity
        field             Px_Last
        2014-06-06         645.57
        2014-06-09          93.70
    """
    logger = logs.get_logger(bdh, level=kwargs.pop('log', logs.LOG_LEVEL))

    # Dividend adjustments
    if isinstance(adjust, str) and adjust:
        if adjust == 'all':
            kwargs['CshAdjNormal'] = True
            kwargs['CshAdjAbnormal'] = True
            kwargs['CapChg'] = True
        else:
            kwargs['CshAdjNormal'] = 'normal' in adjust or 'dvd' in adjust
            kwargs['CshAdjAbnormal'] = 'abn' in adjust or 'dvd' in adjust
            kwargs['CapChg'] = 'split' in adjust

    con, _ = create_connection()
    elms = assist.proc_elms(**kwargs)
    ovrds = assist.proc_ovrds(**kwargs)

    if isinstance(tickers, str): tickers = [tickers]
    if isinstance(flds, str): flds = [flds]
    s_dt = utils.fmt_dt(start_date, fmt='%Y%m%d')
    e_dt = utils.fmt_dt(end_date, fmt='%Y%m%d')

    logger.info(
        f'loading historical data from Bloomberg:\n'
        f'{assist.info_qry(tickers=tickers, flds=flds)}'
    )

    return con.bdh(
        tickers=tickers, flds=flds, elms=elms, ovrds=ovrds,
        start_date=s_dt, end_date=e_dt,
    ).rename_axis(None)
Ejemplo n.º 6
0
import pytest

from xbbg import const
from xbbg.io import files, logs, storage
from xbbg.core import utils, assist

from xbbg.core.timezone import DEFAULT_TZ
from xbbg.core.conn import with_bloomberg, create_connection

if hasattr(pytest, 'config'):
    if 'with_bbg' not in pytest.config.option:
        pytest.skip('no Bloomberg')
    if not pytest.config.option.with_bbg:
        pytest.skip('no Bloomberg')

if hasattr(sys, 'pytest_call'): create_connection()


@with_bloomberg
def bdp(tickers, flds, cache=False, **kwargs):
    """
    Get reference data and save to

    Args:
        tickers: tickers
        flds: fields to query
        cache: bool - use cache to store data
        **kwargs: overrides

    Returns:
        pd.DataFrame