Ejemplo n.º 1
0
def Run(self, img_path, model_name):

    # config variables
    weights = 'imagenet'
    include_top = 0
    train_path = 'jpg'
    classfier_file = 'output/flowers_17/' + model_name + '/classifier.cpickle'

    # create the pretrained models
    # check for pretrained weight usage or not
    # check for top layers to be included or not
    if model_name == "vgg16":
        from vgg16 import VGG16, preprocess_input
        base_model = VGG16(weights=weights)
        model = Model(inputs=base_model.input,
                      outputs=base_model.get_layer('fc1').output)
        image_size = (224, 224)
    elif model_name == "vgg19":
        from vgg19 import VGG19, preprocess_input
        base_model = VGG19(weights=weights)
        model = Model(inputs=base_model.input,
                      outputs=base_model.get_layer('fc1').output)
        image_size = (224, 224)
    elif model_name == "resnet50":
        from resnet50 import ResNet50, preprocess_input
        base_model = ResNet50(weights=weights)
        model = Model(inputs=base_model.input,
                      outputs=base_model.get_layer('avg_pool').output)
        image_size = (224, 224)
    elif model_name == "inceptionv3":
        from inception_v3 import InceptionV3, preprocess_input
        base_model = InceptionV3(weights=weights)
        model = Model(inputs=base_model.input,
                      outputs=base_model.get_layer('mixed9').output)
        image_size = (299, 299)
    elif model_name == "xception":
        from xception import Xception, preprocess_input
        base_model = Xception(weights=weights)
        model = Model(inputs=base_model.input,
                      outputs=base_model.get_layer('avg_pool').output)
        image_size = (299, 299)
    else:
        base_model = None

    img = image.load_img(img_path, target_size=image_size)
    img_array = image.img_to_array(img)
    img_array = np.expand_dims(img_array, axis=0)
    img_array = preprocess_input(img_array)
    feature = model.predict(img_array)
    feature = feature.flatten()
    with open(classfier_file, 'rb') as f:
        model2 = pickle.load(f)

    pred = model2.predict(feature)
    prob = model2.predict_proba(np.atleast_2d(feature))[0]

    return pred, prob[0]
def load_model (args):

	if args.output_layer == '0':
		if args.model == 'inception':
			model = InceptionV3(include_top=False, weights='imagenet', pooling=args.pooling)
			preprocess_mode='tf'
		elif args.model == 'xception':
			model = Xception(include_top=False, weights='imagenet', pooling=args.pooling)
			preprocess_mode='tf'
		elif args.model == 'inceptionresnet':
			model = InceptionResNetV2(include_top=False, weights='imagenet', pooling=args.pooling)
			preprocess_mode='tf'
		elif args.model == 'mobilenet':
			model = MobileNet(include_top=False, weights='imagenet', pooling=args.pooling)
			preprocess_mode='tf'
		elif args.model == 'mobilenet2':	
			model = MobileNetV2(include_top=False, weights='imagenet', pooling=args.pooling)
			preprocess_mode='tf'
		elif args.model == 'nasnet':	
			model = NASNetLarge(include_top=False, weights='imagenet', pooling=args.pooling)
			preprocess_mode='tf'
		elif args.model == 'resnet':
			model = ResNet50(include_top=False, weights='imagenet', pooling=args.pooling)
			preprocess_mode='caffe'
		elif args.model == 'vgg16':
			model = VGG16(include_top=False, weights='imagenet', pooling=args.pooling)
			preprocess_mode='caffe'
		elif args.model == 'vgg19':
			model = VGG19(include_top=False, weights='imagenet', pooling=args.pooling)
			preprocess_mode='caffe'
		else:
			print ("Model not found")
			return 0
	else:
		if args.model == 'inception':
			base_model = InceptionV3(include_top=False, weights='imagenet', pooling=args.pooling)
			model = Model(input=base_model.input, output=base_model.get_layer(args.output_layer).output)
			preprocess_mode='tf'
		elif args.model == 'xception':
			base_model = Xception(include_top=False, weights='imagenet', pooling=args.pooling)
			model = Model(input=base_model.input, output=base_model.get_layer(args.output_layer).output)
			preprocess_mode='tf'
		elif args.model == 'inceptionresnet':
			base_model = InceptionResNetV2(include_top=False, weights='imagenet', pooling=args.pooling)
			model = Model(input=base_model.input, output=base_model.get_layer(args.output_layer).output)
			preprocess_mode='tf'
		elif args.model == 'mobilenet':
			base_model = MobileNet(include_top=False, weights='imagenet', pooling=args.pooling)
			model = Model(input=base_model.input, output=base_model.get_layer(args.output_layer).output)
			preprocess_mode='tf'
		elif args.model == 'mobilenet2':	
			base_model = MobileNetV2(include_top=False, weights='imagenet', pooling=args.pooling)
			model = Model(input=base_model.input, output=base_model.get_layer(args.output_layer).output)
			preprocess_mode='tf'
		elif args.model == 'nasnet':	
			base_model = NASNetLarge(include_top=False, weights='imagenet', pooling=args.pooling)
			model = Model(input=base_model.input, output=base_model.get_layer(args.output_layer).output)
			preprocess_mode='tf'
		elif args.model == 'resnet':
			base_model = ResNet50(include_top=False, weights='imagenet', pooling=args.pooling)
			model = Model(input=base_model.input, output=base_model.get_layer(args.output_layer).output)
			preprocess_mode='caffe'
		elif args.model == 'vgg16':
			base_model = VGG16(include_top=False, weights='imagenet', pooling=args.pooling)
			model = Model(input=base_model.input, output=base_model.get_layer(args.output_layer).output)
			preprocess_mode='caffe'
		elif args.model == 'vgg19':
			base_model = VGG19(include_top=False, weights='imagenet', pooling=args.pooling)
			model = Model(input=base_model.input, output=base_model.get_layer(args.output_layer).output)
			preprocess_mode='caffe'
		else:
			print ("Model not found")
			return 0


	return model,preprocess_mode
Ejemplo n.º 3
0
                  outputs=base_model.get_layer('fc1').output)
    image_size = (224, 224)
elif model_name == "resnet50":
    base_model = ResNet50(weights=weights)
    model = Model(inputs=base_model.input,
                  outputs=base_model.get_layer('flatten').output)
    image_size = (224, 224)
elif model_name == "inceptionv3":
    base_model = InceptionV3(weights=weights)
    model = Model(inputs=base_model.input,
                  outputs=base_model.get_layer('mixed9').output)
    image_size = (299, 299)
elif model_name == "xception":
    base_model = Xception(weights=weights)
    model = Model(inputs=base_model.input,
                  outputs=base_model.get_layer('avg_pool').output)
    image_size = (299, 299)
else:
    base_model = None

# In[ ]:

# path to training dataset
train_labels = sorted(os.listdir(train_path))

# variables to hold features and labels
features = []
labels = []

label = 0
i = 0
Ejemplo n.º 4
0
	image_size = (224, 224)
elif model_name == "vgg19":
	base_model = VGG19(weights=weights)
	model = Model(inputs=base_model.input, outputs=base_model.get_layer('fc1').output)
	image_size = (224, 224)
elif model_name == "resnet50":
	base_model = ResNet50(weights=weights)
	model = Model(inputs=base_model.input, outputs=base_model.get_layer('flatten').output)
	image_size = (224, 224)
elif model_name == "inceptionv3":
	base_model = InceptionV3(weights=weights)
	model = Model(inputs=base_model.input, outputs=base_model.get_layer('mixed9').output)
	image_size = (299, 299)
elif model_name == "xception":
	base_model = Xception(weights=weights)
	model = Model(inputs=base_model.input, outputs=base_model.get_layer('avg_pool').output)
	image_size = (299, 299)
else:
	base_model = None


# In[10]:


# loop over all the labels in the folder
for label in train_labels:
    cur_path = train_path + "/" + label
    for image_path in glob.glob(cur_path):
        img = image.load_img(image_path, target_size=image_size)
        x = image.img_to_array(img)
        x = np.expand_dims(x, axis=0)