Ejemplo n.º 1
0
 def test_fit_nan(self):
     da = self.da.copy()
     da[0, 0, 0] = np.nan
     out_nan = generic.fit(da, "lognorm")
     out_censor = generic.fit(da[1:], "lognorm")
     np.testing.assert_array_equal(out_nan.values[:, 0, 0],
                                   out_censor.values[:, 0, 0])
Ejemplo n.º 2
0
    def test_fit(self):
        p = generic.fit(self.da, "lognorm")

        assert p.dims[0] == "dparams"
        assert p.get_axis_num("dparams") == 0
        p0 = lognorm.fit(self.da.values[:, 0, 0])
        np.testing.assert_array_equal(p[:, 0, 0], p0)

        # Check that we can reuse the parameters with scipy distributions
        cdf = lognorm.cdf(0.99, *p.values)
        assert cdf.shape == (self.nx, self.ny)
        assert p.attrs["estimator"] == "Maximum likelihood"
Ejemplo n.º 3
0
    def test_pwm_fit(self, dist):
        """Test that the fitted parameters match parameters used to generate a random sample."""
        pytest.importorskip("lmoments3")
        n = 500
        dc = generic.get_dist(dist)
        par = self.params[dist]
        da = xr.DataArray(
            dc(**par).rvs(size=n),
            dims=("time", ),
            coords={"time": xr.cftime_range("1980-01-01", periods=n)},
        )
        out = generic.fit(da, dist=dist, method="PWM").compute()

        # Check that values are identical to lmoments3's output dict
        l3dc = generic.get_lm3_dist(dist)
        expected = l3dc.lmom_fit(da.values)
        for key, val in expected.items():
            np.testing.assert_array_equal(out.sel(dparams=key), val, 1)
Ejemplo n.º 4
0
    def test_synth(self):
        mu = 23
        sigma = 2
        n = 10000
        per = 0.9
        d = norm(loc=mu, scale=sigma)
        r = xr.DataArray(
            d.rvs(n),
            dims=("time", ),
            coords={"time": xr.cftime_range(start="1980-01-01", periods=n)},
            attrs={"history": "Mosquito bytes per minute"},
        )
        expected = d.ppf(per)

        p = generic.fit(r, dist="norm")
        q = generic.parametric_quantile(p=p, q=per)

        np.testing.assert_array_almost_equal(q, expected, 1)
        assert "quantile" in q.coords
Ejemplo n.º 5
0
 def test_dims_order(self):
     da = self.da.transpose()
     p = generic.fit(da)
     assert p.dims[-1] == "dparams"
Ejemplo n.º 6
0
 def test_empty(self):
     da = self.da.copy()
     da[:, 0, 0] = np.nan
     out = generic.fit(da, "lognorm").values
     assert np.isnan(out[:, 0, 0]).all()
Ejemplo n.º 7
0
 def test_genextreme_fit(self):
     """Check ML fit with a series that leads to poor values without good initial conditions."""
     p = generic.fit(self.genextreme, "genextreme")
     np.testing.assert_allclose(p, (0.20949, 297.954091, 75.7911863), 1e-5)
Ejemplo n.º 8
0
 def test_weibull_min_fit(self):
     """Check ML fit with a series that leads to poor values without good initial conditions."""
     p = generic.fit(self.weibull_min, "weibull_min")
     np.testing.assert_allclose(p, (1.7760067, -322.092552, 4355.262679),
                                1e-5)