Ejemplo n.º 1
0
def plotXD(parser):
    (options, args) = parser.parse_args()
    if len(args) == 0:
        parser.print_help()
        return
    if os.path.exists(args[0]):
        savefile = open(args[0], 'rb')
        xamp = pickle.load(savefile)
        xmean = pickle.load(savefile)
        xcovar = pickle.load(savefile)
        savefile.close()
    else:
        print args[0] + " does not exist ..."
        print "Returning ..."
        return
    #Load XD object in xdtarget
    xdt = xdtarget.xdtarget(amp=xamp, mean=xmean, covar=xcovar)
    out = xdt.sample(nsample=options.nsamples)
    #Prepare for plotting
    if options.expd1: xs = nu.exp(out[:, options.d1])
    elif not options.divided1 is None:
        xs = out[:, options.d1] / options.divided1
    else:
        xs = out[:, options.d1]
    if options.expd2: ys = nu.exp(out[:, options.d2])
    elif not options.divided2 is None:
        ys = out[:, options.d2] / options.divided2
    else:
        ys = out[:, options.d2]
    if options.type == 'DRW':
        #plot logA, logA = 0
        if options.d1 == 0 and options.d2 == 1:
            #Convert to logA
            xs = (nu.log(2.) + xs + nu.log(1. - nu.exp(-1. / nu.exp(ys)))) / 2.
        elif options.d1 == 1 and options.d2 == 0:
            #Convert to logA
            ys = (nu.log(2.) + ys + nu.log(1. - nu.exp(-1. / nu.exp(xs)))) / 2.
        else:
            print "d1 and d2 have to be 0 or 1 (and not the same!) ..."
            print "Returning ..."
            return
    bovy_plot.bovy_print()
    bovy_plot.scatterplot(xs,
                          ys,
                          'k,',
                          onedhists=True,
                          xrange=[options.xmin, options.xmax],
                          yrange=[options.ymin, options.ymax],
                          xlabel=options.xlabel,
                          ylabel=options.ylabel)
    bovy_plot.bovy_end_print(options.plotfilename)
Ejemplo n.º 2
0
def plotXDall(parser):
    nu.random.seed(1)
    (options, args) = parser.parse_args()
    if len(args) == 0:
        parser.print_help()
        return
    if os.path.exists(args[0]):
        savefile = open(args[0], "rb")
        xamp = pickle.load(savefile)
        xmean = pickle.load(savefile)
        xcovar = pickle.load(savefile)
        savefile.close()
    else:
        print args[0] + " does not exist ..."
        print "Returning ..."
        return
    if os.path.exists(args[1]):
        savefile = open(args[1], "rb")
        starxamp = pickle.load(savefile)
        starxmean = pickle.load(savefile)
        starxcovar = pickle.load(savefile)
        savefile.close()
    else:
        print args[1] + " does not exist ..."
        print "Returning ..."
        return
    if os.path.exists(args[2]):
        savefile = open(args[2], "rb")
        rrxamp = pickle.load(savefile)
        rrxmean = pickle.load(savefile)
        rrxcovar = pickle.load(savefile)
        savefile.close()
    else:
        print args[2] + " does not exist ..."
        print "Returning ..."
        return
    if options.nsamplesstar is None:
        options.nsamplesstar = options.nsamples
    if options.nsamplesrrlyrae is None:
        options.nsamplesrrlyrae = options.nsamples
    # Load XD object in xdtarget
    xdt = xdtarget.xdtarget(amp=xamp, mean=xmean, covar=xcovar)
    out = xdt.sample(nsample=options.nsamples)
    xdt = xdtarget.xdtarget(amp=starxamp, mean=starxmean, covar=starxcovar)
    starout = xdt.sample(nsample=options.nsamplesstar)
    xdt = xdtarget.xdtarget(amp=rrxamp, mean=rrxmean, covar=rrxcovar)
    rrout = xdt.sample(nsample=options.nsamplesrrlyrae)
    # Prepare for plotting
    if options.expd1:
        xs = nu.exp(out[:, options.d1])
    elif not options.divided1 is None:
        xs = out[:, options.d1] / options.divided1
    else:
        xs = out[:, options.d1]
    if options.expd2:
        ys = nu.exp(out[:, options.d2])
    elif not options.divided2 is None:
        ys = out[:, options.d2] / options.divided2
    else:
        ys = out[:, options.d2]
    if options.type == "DRW":
        # plot logA, logA = 0
        if options.d1 == 0 and options.d2 == 1:
            # Convert to logA
            xs = (nu.log(2.0) + xs + nu.log(1.0 - nu.exp(-1.0 / nu.exp(ys)))) / 2.0
        elif options.d1 == 1 and options.d2 == 0:
            # Convert to logA
            ys = (nu.log(2.0) + ys + nu.log(1.0 - nu.exp(-1.0 / nu.exp(xs)))) / 2.0
        else:
            print "d1 and d2 have to be 0 or 1 (and not the same!) ..."
            print "Returning ..."
            return
    # stars
    if options.expd1:
        starxs = nu.exp(starout[:, options.d1])
    elif not options.divided1 is None:
        starxs = starout[:, options.d1] / options.divided1
    else:
        starxs = starout[:, options.d1]
    if options.expd2:
        starys = nu.exp(starout[:, options.d2])
    elif not options.divided2 is None:
        starys = starout[:, options.d2] / options.divided2
    else:
        starys = starout[:, options.d2]
    if options.type == "DRW":
        # plot logA, logA = 0
        if options.d1 == 0 and options.d2 == 1:
            # Convert to logA
            starxs = (nu.log(2.0) + starxs + nu.log(1.0 - nu.exp(-1.0 / nu.exp(starys)))) / 2.0
        elif options.d1 == 1 and options.d2 == 0:
            # Convert to logA
            starys = (nu.log(2.0) + starys + nu.log(1.0 - nu.exp(-1.0 / nu.exp(starxs)))) / 2.0
        else:
            print "d1 and d2 have to be 0 or 1 (and not the same!) ..."
            print "Returning ..."
            return
    # RR Lyrae
    if options.expd1:
        rrxs = nu.exp(rrout[:, options.d1])
    elif not options.divided1 is None:
        rrxs = rrout[:, options.d1] / options.divided1
    else:
        rrxs = rrout[:, options.d1]
    if options.expd2:
        rrys = nu.exp(rrout[:, options.d2])
    elif not options.divided2 is None:
        rrys = rrout[:, options.d2] / options.divided2
    else:
        rrys = rrout[:, options.d2]
    if options.type == "DRW":
        # plot logA, logA = 0
        if options.d1 == 0 and options.d2 == 1:
            # Convert to logA
            rrxs = (nu.log(2.0) + rrxs + nu.log(1.0 - nu.exp(-1.0 / nu.exp(rrys)))) / 2.0
        elif options.d1 == 1 and options.d2 == 0:
            # Convert to logA
            rrys = (nu.log(2.0) + rrys + nu.log(1.0 - nu.exp(-1.0 / nu.exp(rrxs)))) / 2.0
        else:
            print "d1 and d2 have to be 0 or 1 (and not the same!) ..."
            print "Returning ..."
            return
    # Plot
    xrange = [options.xmin, options.xmax]
    yrange = [options.ymin, options.ymax]
    data = sc.array([xs, ys]).T
    bins = int(round(0.3 * sc.sqrt(options.nsamples)))
    hist, edges = sc.histogramdd(data, bins=bins, range=[xrange, yrange])
    # Censor hist ASSUMES gamma=[0.,1.2], logA=[-9.21/2.,0.] for powerlawSF
    x = nu.zeros((bins, bins))
    y = nu.zeros((bins, bins))
    for bb in range(bins):
        x[:, bb] = nu.linspace(options.xmin, options.xmax, bins)
        y[bb, :] = nu.linspace(options.ymin, options.ymax, bins)
    # mask
    if options.type == "powerlawSF":
        hist[(y < 0.1) * (x > -3.0) * (x < -1.5)] = nu.nan
        hist[(x < -3.0)] = nu.nan
        hist[(x > -2.0) * (y < (0.25 * x + 0.6))] = nu.nan
        onedhistyweights = nu.ones(len(ys)) / 100.0
    elif options.type == "DRW":
        hist[(y < (-4.223 * (x + 2) - 10))] = nu.nan
        hist[(y < -4.153) * (y < (58.47 * (x + 2.1) - 10.0))] = nu.nan
        hist[(y > -4.153) * (y < (2.93 * x + 2.0) - 1.0)] = nu.nan
        onedhistyweights = nu.ones(len(ys)) / 2500.0
    bovy_plot.bovy_print()
    # First just plot contours
    cdict = {
        "red": ((0.0, 1.0, 1.0), (1.0, 1.0, 1.0)),
        "green": ((0.0, 1.0, 1.0), (1.0, 1.0, 1.0)),
        "blue": ((0.0, 1.0, 1.0), (1.0, 1.0, 1.0)),
    }
    allwhite = matplotlib.colors.LinearSegmentedColormap("allwhite", cdict, 256)
    bovy_plot.scatterplot(
        xs,
        ys,
        "b,",
        onedhists=True,
        bins=bins,
        cmap=allwhite,
        onedhistynormed=False,
        onedhistyweights=onedhistyweights,
        xrange=xrange,
        yrange=yrange,
        onedhistec="b",
        xlabel=options.xlabel,
        ylabel=options.ylabel,
    )
    bovy_plot.scatterplot(
        starxs, starys, "k,", onedhists=True, bins=bins, cmap=allwhite, xrange=xrange, yrange=yrange, overplot=True
    )
    bovy_plot.scatterplot(
        rrxs,
        rrys,
        "r,",
        onedhists=True,
        bins=bins,
        cmap=allwhite,
        onedhistec="r",
        xrange=xrange,
        yrange=yrange,
        overplot=True,
    )
    hist /= nu.nansum(hist)
    # Custom colormap
    cdict = {
        "red": ((0.0, 1.0, 1.0), (1.0, 0.0, 0.0)),
        "green": ((0.0, 1.0, 1.0), (1.0, 0.0, 0.0)),
        "blue": ((0.0, 1.0, 1.0), (1.0, 1.0, 1.0)),
    }
    my_cmap = matplotlib.colors.LinearSegmentedColormap("my_colormap", cdict, 256)
    bovy_plot.scatterplot(
        xs,
        ys,
        "b,",
        onedhists=False,
        contours=False,
        levels=[1.01],
        bins=bins,
        cmap=my_cmap,
        hist=hist,
        edges=edges,
        onedhistynormed=False,
        onedhistyweights=onedhistyweights,
        xrange=xrange,
        yrange=yrange,
        overplot=True,
    )
    # Stars
    data = sc.array([starxs, starys]).T
    hist, edges = sc.histogramdd(data, bins=bins, range=[xrange, yrange])
    if options.type == "powerlawSF":
        hist[(x > -2.5)] = nu.nan
        hist[(x < -2.5) * (y > (-0.19 * (x + 2.5)))] = nu.nan
    elif options.type == "DRW":
        hist[(y >= (-4.223 * (x + 2) - 10))] = nu.nan
    hist /= nu.nansum(hist)
    bovy_plot.scatterplot(
        starxs,
        starys,
        "k,",
        onedhists=True,
        contours=False,
        levels=[1.01],  # HACK such that outliers aren't plotted
        bins=bins,
        hist=hist,
        edges=edges,
        xrange=xrange,
        yrange=yrange,
        overplot=True,
    )
    # RR Lyrae
    data = sc.array([rrxs, rrys]).T
    hist, edges = sc.histogramdd(data, bins=bins, range=[xrange, yrange])
    if options.type == "powerlawSF":
        hist[(x < -2.5)] = nu.nan
        hist[(x > -2.5) * (y > ((x + 2.5) / 1.5) ** 9.0 * 1.15 + 0.1)] = nu.nan
        # hist[(x > -2.5)*(y > (.25*x+.6))]= nu.nan
    elif options.type == "DRW":
        hist[(y < -4.153) * (y >= (58.47 * (x + 2.1) - 10.0)) * (y > -7.5)] = nu.nan
        hist[(y < -7.5) * (x < -2.1)] = nu.nan
        hist[(y > -4.153) * (y >= (2.93 * x + 2.0 - 1.5))] = nu.nan
    # Custom colormap
    cdict = {
        "red": ((0.0, 1.0, 1.0), (1.0, 1.0, 1.0)),
        "green": ((0.0, 1.0, 1.0), (1.0, 0.0, 0.0)),
        "blue": ((0.0, 1.0, 1.0), (1.0, 0.0, 0.0)),
    }
    my_cmap = matplotlib.colors.LinearSegmentedColormap("my_colormap", cdict, 256)
    hist /= nu.nansum(hist)
    bovy_plot.scatterplot(
        rrxs,
        rrys,
        "r,",
        onedhists=False,
        contours=False,
        levels=[1.01],  # HACK such that outliers aren't plotted
        bins=bins,
        cmap=my_cmap,
        hist=hist,
        edges=edges,
        xrange=xrange,
        yrange=yrange,
        overplot=True,
    )
    # Label
    if options.type == "powerlawSF":
        bovy_plot.bovy_text(-4.4, 1.15, r"$\mathrm{F/G\ stars}$", color="k")
        bovy_plot.bovy_text(-4.4, 1.05, r"$\mathrm{QSOs}$", color="b")
        bovy_plot.bovy_text(-4.4, 0.95, r"$\mathrm{RR\ Lyrae}$", color="r")
    elif options.type == "DRW":
        bovy_plot.bovy_text(-4.4, 2.88, r"$\mathrm{F/G\ stars}$", color="k")
        bovy_plot.bovy_text(-4.4, 1.76, r"$\mathrm{QSOs}$", color="b")
        bovy_plot.bovy_text(-4.4, 0.64, r"$\mathrm{RR\ Lyrae}$", color="r")
    bovy_plot.bovy_end_print(options.plotfilename)
Ejemplo n.º 3
0
def plotXDall(parser):
    nu.random.seed(1)
    (options, args) = parser.parse_args()
    if len(args) == 0:
        parser.print_help()
        return
    if os.path.exists(args[0]):
        savefile = open(args[0], 'rb')
        xamp = pickle.load(savefile)
        xmean = pickle.load(savefile)
        xcovar = pickle.load(savefile)
        savefile.close()
    else:
        print args[0] + " does not exist ..."
        print "Returning ..."
        return
    if os.path.exists(args[1]):
        savefile = open(args[1], 'rb')
        starxamp = pickle.load(savefile)
        starxmean = pickle.load(savefile)
        starxcovar = pickle.load(savefile)
        savefile.close()
    else:
        print args[1] + " does not exist ..."
        print "Returning ..."
        return
    if os.path.exists(args[2]):
        savefile = open(args[2], 'rb')
        rrxamp = pickle.load(savefile)
        rrxmean = pickle.load(savefile)
        rrxcovar = pickle.load(savefile)
        savefile.close()
    else:
        print args[2] + " does not exist ..."
        print "Returning ..."
        return
    if options.nsamplesstar is None: options.nsamplesstar = options.nsamples
    if options.nsamplesrrlyrae is None:
        options.nsamplesrrlyrae = options.nsamples
    #Load XD object in xdtarget
    xdt = xdtarget.xdtarget(amp=xamp, mean=xmean, covar=xcovar)
    out = xdt.sample(nsample=options.nsamples)
    xdt = xdtarget.xdtarget(amp=starxamp, mean=starxmean, covar=starxcovar)
    starout = xdt.sample(nsample=options.nsamplesstar)
    xdt = xdtarget.xdtarget(amp=rrxamp, mean=rrxmean, covar=rrxcovar)
    rrout = xdt.sample(nsample=options.nsamplesrrlyrae)
    #Prepare for plotting
    if options.expd1: xs = nu.exp(out[:, options.d1])
    elif not options.divided1 is None:
        xs = out[:, options.d1] / options.divided1
    else:
        xs = out[:, options.d1]
    if options.expd2: ys = nu.exp(out[:, options.d2])
    elif not options.divided2 is None:
        ys = out[:, options.d2] / options.divided2
    else:
        ys = out[:, options.d2]
    if options.type == 'DRW':
        #plot logA, logA = 0
        if options.d1 == 0 and options.d2 == 1:
            #Convert to logA
            xs = (nu.log(2.) + xs + nu.log(1. - nu.exp(-1. / nu.exp(ys)))) / 2.
        elif options.d1 == 1 and options.d2 == 0:
            #Convert to logA
            ys = (nu.log(2.) + ys + nu.log(1. - nu.exp(-1. / nu.exp(xs)))) / 2.
        else:
            print "d1 and d2 have to be 0 or 1 (and not the same!) ..."
            print "Returning ..."
            return
    #stars
    if options.expd1: starxs = nu.exp(starout[:, options.d1])
    elif not options.divided1 is None:
        starxs = starout[:, options.d1] / options.divided1
    else:
        starxs = starout[:, options.d1]
    if options.expd2: starys = nu.exp(starout[:, options.d2])
    elif not options.divided2 is None:
        starys = starout[:, options.d2] / options.divided2
    else:
        starys = starout[:, options.d2]
    if options.type == 'DRW':
        #plot logA, logA = 0
        if options.d1 == 0 and options.d2 == 1:
            #Convert to logA
            starxs = (nu.log(2.) + starxs +
                      nu.log(1. - nu.exp(-1. / nu.exp(starys)))) / 2.
        elif options.d1 == 1 and options.d2 == 0:
            #Convert to logA
            starys = (nu.log(2.) + starys +
                      nu.log(1. - nu.exp(-1. / nu.exp(starxs)))) / 2.
        else:
            print "d1 and d2 have to be 0 or 1 (and not the same!) ..."
            print "Returning ..."
            return
    #RR Lyrae
    if options.expd1: rrxs = nu.exp(rrout[:, options.d1])
    elif not options.divided1 is None:
        rrxs = rrout[:, options.d1] / options.divided1
    else:
        rrxs = rrout[:, options.d1]
    if options.expd2: rrys = nu.exp(rrout[:, options.d2])
    elif not options.divided2 is None:
        rrys = rrout[:, options.d2] / options.divided2
    else:
        rrys = rrout[:, options.d2]
    if options.type == 'DRW':
        #plot logA, logA = 0
        if options.d1 == 0 and options.d2 == 1:
            #Convert to logA
            rrxs = (nu.log(2.) + rrxs +
                    nu.log(1. - nu.exp(-1. / nu.exp(rrys)))) / 2.
        elif options.d1 == 1 and options.d2 == 0:
            #Convert to logA
            rrys = (nu.log(2.) + rrys +
                    nu.log(1. - nu.exp(-1. / nu.exp(rrxs)))) / 2.
        else:
            print "d1 and d2 have to be 0 or 1 (and not the same!) ..."
            print "Returning ..."
            return
    #Plot
    xrange = [options.xmin, options.xmax]
    yrange = [options.ymin, options.ymax]
    data = sc.array([xs, ys]).T
    bins = int(round(0.3 * sc.sqrt(options.nsamples)))
    hist, edges = sc.histogramdd(data, bins=bins, range=[xrange, yrange])
    #Censor hist ASSUMES gamma=[0.,1.2], logA=[-9.21/2.,0.] for powerlawSF
    x = nu.zeros((bins, bins))
    y = nu.zeros((bins, bins))
    for bb in range(bins):
        x[:, bb] = nu.linspace(options.xmin, options.xmax, bins)
        y[bb, :] = nu.linspace(options.ymin, options.ymax, bins)
    #mask
    if options.type == 'powerlawSF':
        hist[(y < 0.1) * (x > -3.) * (x < -1.5)] = nu.nan
        hist[(x < -3.)] = nu.nan
        hist[(x > -2.) * (y < (0.25 * x + 0.6))] = nu.nan
        onedhistyweights = nu.ones(len(ys)) / 100.
    elif options.type == 'DRW':
        hist[(y < (-4.223 * (x + 2) - 10))] = nu.nan
        hist[(y < -4.153) * (y < (58.47 * (x + 2.1) - 10.))] = nu.nan
        hist[(y > -4.153) * (y < (2.93 * x + 2.) - 1.)] = nu.nan
        onedhistyweights = nu.ones(len(ys)) / 2500.
    bovy_plot.bovy_print()
    #First just plot contours
    cdict = {
        'red': ((.0, 1.0, 1.0), (1.0, 1.0, 1.0)),
        'green': ((.0, 1.0, 1.0), (1.0, 1.0, 1.0)),
        'blue': ((.0, 1.0, 1.0), (1.0, 1.0, 1.0))
    }
    allwhite = matplotlib.colors.LinearSegmentedColormap(
        'allwhite', cdict, 256)
    bovy_plot.scatterplot(xs,
                          ys,
                          'b,',
                          onedhists=True,
                          bins=bins,
                          cmap=allwhite,
                          onedhistynormed=False,
                          onedhistyweights=onedhistyweights,
                          xrange=xrange,
                          yrange=yrange,
                          onedhistec='b',
                          xlabel=options.xlabel,
                          ylabel=options.ylabel)
    bovy_plot.scatterplot(starxs,
                          starys,
                          'k,',
                          onedhists=True,
                          bins=bins,
                          cmap=allwhite,
                          xrange=xrange,
                          yrange=yrange,
                          overplot=True)
    bovy_plot.scatterplot(rrxs,
                          rrys,
                          'r,',
                          onedhists=True,
                          bins=bins,
                          cmap=allwhite,
                          onedhistec='r',
                          xrange=xrange,
                          yrange=yrange,
                          overplot=True)
    hist /= nu.nansum(hist)
    #Custom colormap
    cdict = {
        'red': ((.0, 1.0, 1.0), (1.0, .0, .0)),
        'green': ((0.0, 1.0, 1.0), (1.0, .0, .0)),
        'blue': ((0.0, 1.0, 1.0), (1.0, 1.0, 1.0))
    }
    my_cmap = matplotlib.colors.LinearSegmentedColormap(
        'my_colormap', cdict, 256)
    bovy_plot.scatterplot(xs,
                          ys,
                          'b,',
                          onedhists=False,
                          contours=False,
                          levels=[1.01],
                          bins=bins,
                          cmap=my_cmap,
                          hist=hist,
                          edges=edges,
                          onedhistynormed=False,
                          onedhistyweights=onedhistyweights,
                          xrange=xrange,
                          yrange=yrange,
                          overplot=True)
    #Stars
    data = sc.array([starxs, starys]).T
    hist, edges = sc.histogramdd(data, bins=bins, range=[xrange, yrange])
    if options.type == 'powerlawSF':
        hist[(x > -2.5)] = nu.nan
        hist[(x < -2.5) * (y > (-.19 * (x + 2.5)))] = nu.nan
    elif options.type == 'DRW':
        hist[(y >= (-4.223 * (x + 2) - 10))] = nu.nan
    hist /= nu.nansum(hist)
    bovy_plot.scatterplot(
        starxs,
        starys,
        'k,',
        onedhists=True,
        contours=False,
        levels=[1.01],  #HACK such that outliers aren't plotted
        bins=bins,
        hist=hist,
        edges=edges,
        xrange=xrange,
        yrange=yrange,
        overplot=True)
    #RR Lyrae
    data = sc.array([rrxs, rrys]).T
    hist, edges = sc.histogramdd(data, bins=bins, range=[xrange, yrange])
    if options.type == 'powerlawSF':
        hist[(x < -2.5)] = nu.nan
        hist[(x > -2.5) * (y > ((x + 2.5) / 1.5)**9. * 1.15 + 0.1)] = nu.nan
        #hist[(x > -2.5)*(y > (.25*x+.6))]= nu.nan
    elif options.type == 'DRW':
        hist[(y < -4.153) * (y >=
                             (58.47 * (x + 2.1) - 10.)) * (y > -7.5)] = nu.nan
        hist[(y < -7.5) * (x < -2.1)] = nu.nan
        hist[(y > -4.153) * (y >= (2.93 * x + 2. - 1.5))] = nu.nan
    #Custom colormap
    cdict = {
        'red': ((.0, 1.0, 1.0), (1.0, 1.0, 1.0)),
        'green': ((0.0, 1.0, 1.0), (1.0, .0, .0)),
        'blue': ((0.0, 1.0, 1.0), (1.0, .0, .0))
    }
    my_cmap = matplotlib.colors.LinearSegmentedColormap(
        'my_colormap', cdict, 256)
    hist /= nu.nansum(hist)
    bovy_plot.scatterplot(
        rrxs,
        rrys,
        'r,',
        onedhists=False,
        contours=False,
        levels=[1.01],  #HACK such that outliers aren't plotted
        bins=bins,
        cmap=my_cmap,
        hist=hist,
        edges=edges,
        xrange=xrange,
        yrange=yrange,
        overplot=True)
    #Label
    if options.type == 'powerlawSF':
        bovy_plot.bovy_text(-4.4, 1.15, r'$\mathrm{F/G\ stars}$', color='k')
        bovy_plot.bovy_text(-4.4, 1.05, r'$\mathrm{QSOs}$', color='b')
        bovy_plot.bovy_text(-4.4, 0.95, r'$\mathrm{RR\ Lyrae}$', color='r')
    elif options.type == 'DRW':
        bovy_plot.bovy_text(-4.4, 2.88, r'$\mathrm{F/G\ stars}$', color='k')
        bovy_plot.bovy_text(-4.4, 1.76, r'$\mathrm{QSOs}$', color='b')
        bovy_plot.bovy_text(-4.4, .64, r'$\mathrm{RR\ Lyrae}$', color='r')
    bovy_plot.bovy_end_print(options.plotfilename)