Ejemplo n.º 1
0
def get_cls(coords):
  xf = XFoil()
  xf.print = False
  cl_s = []
  for coord in coords:
    cl = get_cl(coord, xf)
    cl_s.append(cl)
  
  return np.array(cl_s)
Ejemplo n.º 2
0
def get_cl(coord, xf=None, angle=5):
  if xf is None:
    xf = XFoil()
    xf.print = False

  xf.Re = 3e6
  xf.max_iter = 100
  datax, datay = coord.reshape(2, -1)
  xf.airfoil = Airfoil(x=datax, y=datay)
  c = xf.a(angle)
  cl= c[0]
  return cl
Ejemplo n.º 3
0
    def initialize(self):
        super().initialize()
        self.options.declare("print", default=False, types=bool)

        xf = XFoil()
        xf.print = False
        self.options.declare("_xf", default=xf, types=XFoil, allow_none=True)
        self.options.declare("_pool",
                             default=ThreadPool(processes=1),
                             types=ThreadPool,
                             allow_none=True)

        self.recording_options["options_excludes"] = ["_xf", "_pool"]
Ejemplo n.º 4
0
    def evaluate(self,individual):
        DELTA = 1e10
        #----------------------------------
        #遺伝子に基づいて新翼型を生成
        #----------------------------------
        #遺伝子に基づきスプライン翼型を作成
        x = individual[:int(len(individual)/2)]
        x.insert(0,1.0)
        x.insert(int(len(x)/2)+1,0.0)
        x.append(1.0)
        y = individual[int(len(individual)/2):]
        if not (all([u - d > 0 for u, d in zip(y[:int(len(y)/2)], y[int(len(y)/2):])]) or all([u - d < 0 for u, d in zip(y[:int(len(y)/2)], y[int(len(y)/2):])])):
            print("crossed")
            return [DELTA*10]*self.NOBJ
        y.insert(0,0.0)
        y.insert(int(len(y)/2)+1,0.0)
        y.append(0.0)
        newdat = fc.spline_foil(x, y, 200)
        shape_dat = fc.shape_dat([[a, b] for a, b in zip(newdat[0][::-1], newdat[1][::-1])])

        #翼型の形に関する情報を取得する
        foil_para = fc.get_foil_para(shape_dat)
        mt, mta, mc, mca, s, crossed, bd, bt, bc, smooth, td = foil_para
        # mt: 最大翼厚(百分率)
        # mta: 最大翼厚位置(百分率)
        # mc: 最大キャンバー(百分率)
        # mca: 最大きゃんばー位置(百分率)
        # s: 翼型の下面における、最大y座標-最小y座標
        # crossed: 翼型が交差しているならTrue,それ以外ならFalse
        # bd: 翼型の粗さ(大きいほど粗い)
        # bt: 翼厚分布の粗さ(大きいほど粗い)
        # bc: キャンバー分布の粗さ(大きいほど粗い)
        # smooth: 無視
        # td: 翼厚分布

        if crossed:
            print("crossed_a")
            return [DELTA*10]*self.NOBJ
        else:
            print("hi_a")

        #新しい翼型をAerofoilオブジェクトに適用
        datx = np.array(newdat[0][::-1])
        daty = np.array(newdat[1][::-1])
        newfoil = Airfoil(x = datx, y = daty)

        #翼型の形に関する拘束条件
        penalty = 0
        if not all([t >= 0.0035 for t in td[10:80]]):
            penalty += 100 * (sum([abs(t - 0.0035)*10 for t in td[15:85] if t - 0.0035 < 0]))
        if not all([t <= 0.015 for t in td[:15]]):
            penalty += 100 * (sum([abs(t - 0.015)*10 for t in td[:15] if t > 0.015]))
        if mta > 0.4:
            penalty += 100 * (mta - 0.4)
        if mc < 0.0:
            penalty += 100 * (-mc)
        if datx[0] > 1.002 or datx[0] < 0.998:
            print("invalid foil")
            return [DELTA*10]*self.NOBJ
        #----------------------------------
        #新翼型の解析
        #----------------------------------
        try:
            xf = XFoil()
            #レイノルズ数の設定
            xf.airfoil = newfoil
            xf.Re = self.re
            xf.print = False
            xf.max_iter = 40

            #xf.polar = "polar" + id
            #境界要素法計算時1ステップにおける計算回数
            #xf.repanel(n_nodes = 180)
            #計算結果格納
            #result = xf.OneAlpha()
            cl, cd, cm, cp  = xf.a(5.0)
        #----------------------------------
        #目的値
        #----------------------------------
            if cl >= 0:
                obj1 = 1/cl
            else:
                obj1 = self.delta
            
            obj2 = cd


        except Exception as e:
            obj1,obj2=[DELTA]*self.NOBJ
            traceback.print_exc()

        if (np.isnan(obj1)):
            obj1 = DELTA
        if (np.isnan(obj2)):
            obj2 = DELTA

        return [obj1 + penalty, obj2 + penalty]
Ejemplo n.º 5
0
def analyze_airfoil(x,
                    y_u,
                    y_l,
                    cl,
                    rey,
                    mach=0,
                    xf=None,
                    pool=None,
                    show_output=False):
    """
    Analyze an airfoil at a given lift coefficient for given Reynolds and Mach numbers using XFoil.

    Parameters
    ----------
    x : array_like
        Airfoil x-coordinates
    y_u, y_l : array_like
        Airfoil upper and lower curve y-coordinates
    cl : float
        Target lift coefficient
    rey, mach : float
        Reynolds and Mach numbers
    xf : XFoil, optional
        An instance of the XFoil class to use to perform the analysis. Will be created if not given
    pool : multiprocessing.ThreadPool, optional
        An instance of the multiprocessing.Threadpool class used to run the xfoil_worker. Will be created if not given
    show_output : bool, optional
        If True, a debug string will be printed after analyses. False by default.

    Returns
    -------
    cd, cm : float or np.nan
        Drag and moment coefficients of the airfoil at specified conditions, or nan if XFoil did not run successfully
    """
    # If the lower and upper curves swap, this is a bad, self-intersecting airfoil. Return 1e27 immediately.
    if np.any(y_l > y_u):
        return np.nan
    else:
        clean_xf = False
        if xf is None:
            xf = XFoil()
            xf.print = show_output
            clean_xf = True

        clean_pool = False
        if pool is None:
            pool = ThreadPool(processes=1)
            clean_pool = True

        xf.airfoil = Airfoil(x=np.concatenate((x[-1:0:-1], x)),
                             y=np.concatenate((y_u[-1:0:-1], y_l)))
        xf.Re = rey
        xf.M = mach
        xf.max_iter = 100
        xf.n_crit = 0.1
        cd, cm = pool.apply(xfoil_worker, args=(xf, cl))

    if clean_xf:
        del xf
    if clean_pool:
        del pool

    return cd, cm, None if clean_xf else xf
Ejemplo n.º 6
0
def evaluate(individual):
    global code_division

    #----------------------------------
    #遺伝子にも続いて新翼型を生成
    #----------------------------------
    #遺伝子をデコード
    ratios = decoder(individual, code_division)

    #遺伝子に基づき翼型を混合して、新しい翼型を作る
    datlist_list = [fc.read_datfile(file) for file in datfiles]
    datlist_shaped_list = [fc.shape_dat(datlist) for datlist in datlist_list]
    newdat = fc.interpolate_dat(datlist_shaped_list,ratios)

    #翼型の形に関する情報を取得する
    #foilpara == [最大翼厚、最大翼厚位置、最大キャンバ、最大キャンバ位置、S字の強さ]
    foil_para = fc.get_foil_para(newdat)

    #新しい翼型をAerofoilオブジェクトに適用
    datx = np.array([ax[0] for ax in newdat])
    daty = np.array([ax[1] for ax in newdat])
    newfoil = Airfoil(x = datx, y = daty)

    mt, mta, mc, mca, s = foil_para

    #----------------------------------
    #翼の形に関する拘束条件
    #----------------------------------
    penalty = 0
    print('===================')
    if(mc<0):
        print("out of the border")
        print("reverse_cmaber")
        penalty -= mc
    if(mt<0.08):
        print("out of the border")
        print("too_thin")
        penalty += 0.08-mt
    if(mt>0.11):
        print("out of the border")
        print("too_fat")
        penalty += mt-0.11
    #if(foil_para[4]>0.03):
    #    print("out of the border")
    #    print("peacock")
    #    print('===================')
    #    return (1.0+(foil_para[4]-0.03),)*NOBJ
    if(mta<0.23):
        print("out of the border")
        print("Atama Dekkachi!")
        penalty += 0.23 - mta
    if(mta>0.3):
        print("out of the border")
        print("Oshiri Dekkachi!")
        penalty += mta - 0.3

    #----------------------------------
    #新翼型の解析
    #----------------------------------
    xf = XFoil()
    xf.airfoil = newfoil
    #レイノルズ数の設定
    xf.Re = 1.5e5
    #境界要素法計算時1ステップにおける計算回数
    xf.max_iter = 60
    #座標整形
    xf.repanel(n_nodes = 300)
    xf.print = False
    #計算結果格納
    a, cl, cd, cm, cp = xf.cseq(0.4, 1.1, 0.1)
    lr = [l/d for l, d in zip(cl,cd)]
    #----------------------------------
    #目的値
    #----------------------------------
    try:
        #揚抗比の逆数を最小化
        obj1 = 1/lr[1]
        #揚抗比のピークを滑らかに(安定性の最大化)
        maxlr = max(lr)
        maxlr_index = lr.index(maxlr)
        obj2 = abs(maxlr - lr[maxlr_index+1])

        #下面の反りを最小化(製作再現性の最大化)
        obj3 = foil_para[4]
    except Exception as e:
        obj1,obj2,obj3=[1.0]*NOBJ
        traceback.print_exc()

    if (np.isnan(obj1) or obj1 > 1):
        obj1 = 1
    if (np.isnan(obj2) or obj2 > 1):
        obj2 = 1
    if (np.isnan(obj3) or obj3 > 1):
        obj3 = 1

    obj1 += penalty
    obj2 += penalty
    obj3 += penalty

    print("individual",individual)
    print("evaluate",obj1,obj2,obj3)
    print("max_thickness",foil_para[0])
    print("at",foil_para[1])
    print("max_camber",foil_para[2])
    print("at",foil_para[3])
    print("S",foil_para[4])
    print('===================')

    return [obj1, obj2, obj3]
Ejemplo n.º 7
0
  if not use_dataset:
    npz = np.load(input_path)
    labels = npz[npz.files[0]]
    coords = npz[npz.files[1]]
  else:
    perfs_npz = np.load("./dataset/standardized_perfs.npz")
    coords_npz = np.load("./dataset/standardized_coords.npz")
    coords = coords_npz[coords_npz.files[0]]
    coord_mean = coords_npz[coords_npz.files[1]]
    coord_std = coords_npz[coords_npz.files[2]]
    perfs = perfs_npz[perfs_npz.files[0]]
    perf_mean = perfs_npz[perfs_npz.files[1]]
    perf_std = perfs_npz[perfs_npz.files[2]]

  xf = XFoil()
  xf.print = False
  cnt = 0
  print("start calculating!")
  start = time.time()
  coords = coords*coord_std+coord_mean if use_dataset else coords
  for label, coord in zip(labels, coords):
    cl = get_cl(xf, coord)
    if not np.isnan(cl):
      cnt+=1
      if type(label) is np.float64:
        label = str(round(label, 3))
      else:
        label = str(round(label[0],3))
      print("label: {0}, cl: {1}".format(label, cl))

  end = time.time()
Ejemplo n.º 8
0
def feature_xfoil(cst_u,
                  cst_l,
                  t,
                  Minf: float,
                  Re,
                  AoA,
                  n_crit=0.1,
                  fname='feature-xfoil.txt'):
    '''
    Evaluate by xfoil and extract features.

    Inputs:
    ---
    cst-u, cst-l:   list of upper/lower CST coefficients of the airfoil. \n
    t:      airfoil thickness or None \n
    Minf:   free stream Mach number for wall Mach number calculation \n
    Re, AoA (deg): flight condition (s), float or list, for Xfoil \n
    n_crit: critical amplification ratio for transition in xfoil \n
    fname:  output file name. If None, then no output \n

    ### Dependencies: cst-modeling3d, xfoil  
    '''

    from cst_modeling.foil import cst_foil
    from xfoil import XFoil
    from xfoil.model import Airfoil

    #TODO: Build foil
    #! 201 is the maximum amount of points that xfoil can handle
    #! tail = 0.001 is to avoid point overlap
    xx, yu, yl, t0, R0 = cst_foil(201, cst_u, cst_l, x=None, t=t, tail=0.001)

    #! xfoil do not support leading edge of (0,0) on both upper and lower surface
    x = np.array(list(reversed(xx[1:])) + xx[1:])
    y = np.array(list(reversed(yu[1:])) + yl[1:])
    foil = Airfoil(x, y)

    #TODO: Xfoil
    xf = XFoil()
    xf.print = False
    xf.airfoil = foil
    xf.max_iter = 40

    #* Transition by power law
    xf.n_crit = n_crit

    #TODO: Xfoil calculation
    if not isinstance(Re, list):
        Re = [Re]
        AoA = [AoA]

    n = len(Re)
    for i in range(n):

        xf.reset_bls()

        if Re[i] is not None:
            xf.Re = Re[i]

        cl, cd, cm, cp = xf.a(AoA[i])
        x, cp = xf.get_cp_distribution()

        print(xf.Re, AoA[i], cl)

        #* Extract features
        fF = PhysicalXfoil(Minf, AoA[i], Re[i])
        fF.setdata(x, y, cp)
        fF.extract_features()

        #* Output
        if fname is None:
            continue

        if i == 0:
            f = open(fname, 'w')
        else:
            f = open(fname, 'a')

        f.write('\n')
        f.write('%10s   %15.6f \n' % ('Minf', Minf))
        f.write('%10s   %15.6f \n' % ('AoA', AoA[i]))
        f.write('%10s   %15.6f \n' % ('Re', Re[i] / 1e6))
        f.write('%10s   %15.6f \n' % ('CL', cl))
        f.write('%10s   %15.6f \n' % ('Cd', cd))
        f.write('%10s   %15.6f \n' % ('Cm', cm))
        f.close()

        fF.output_features(fname=fname, append=True)
Ejemplo n.º 9
0
    def evaluate(self, individual):
        #解析が発散した際の評価値
        DELTA = 1e10
        #----------------------------------
        #遺伝子に基づいて新翼型を生成
        #----------------------------------
        #遺伝子をデコード
        ratios = self.decoder(individual, self.code_division)

        #遺伝子に基づき翼型を混合して、新しい翼型を作る
        datlist_list = [fc.read_datfile(file) for file in self.datfiles]
        datlist_shaped_list = [
            fc.shape_dat(datlist) for datlist in datlist_list
        ]
        newdat = fc.interpolate_dat(datlist_shaped_list, ratios)

        #翼型の形に関する情報を取得する
        mt, mta, mc, mca, s, crossed, bd, bt, bc, smooth, td = fc.get_foil_para(
            newdat)

        #新しい翼型をAerofoilオブジェクトに適用
        datx = np.array([ax[0] for ax in newdat])
        daty = np.array([ax[1] for ax in newdat])
        newfoil = Airfoil(x=datx, y=daty)

        #----------------------------------
        #翼の形に関する拘束条件
        #----------------------------------
        penalty = 0
        #キャンバに関する拘束条件
        if (mc < 0):
            penalty -= mc
        #最大翼厚に関する拘束条件
        if (mt < 0.08):
            penalty += 0.08 - mt
        if (mt > 0.11):
            penalty += mt - 0.11
        #最大翼厚位置に関する拘束条件
        if (mta < 0.23):
            penalty += 0.23 - mta
        if (mta > 0.3):
            penalty += mta - 0.3

        #----------------------------------
        #新翼型の解析
        #----------------------------------
        xf = XFoil()
        xf.airfoil = newfoil
        #レイノルズ数の設定
        xf.Re = self.re
        #境界要素法計算時1ステップにおける計算回数
        xf.max_iter = 60
        xf.print = False

        #計算結果格納
        a, cl, cd, cm, cp = xf.cseq(0.4, 1.1, 0.1)
        #----------------------------------
        #目的値
        #----------------------------------
        try:
            #揚抗比の逆数を最小化
            obj1 = 1 / lr[1]

            #揚抗比のピークを滑らかに(安定性の最大化)
            maxlr = max(lr)
            maxlr_index = lr.index(maxlr)
            obj2 = abs(maxlr - lr[maxlr_index + 1])

            #下面の反りを最小化(製作再現性の最大化)
            obj3 = s

        except Exception as e:
            obj1, obj2, obj3 = [DELTA] * self.NOBJ
            traceback.print_exc()

        if (np.isnan(obj1) or obj1 > 1):
            obj1 = DELTA
        if (np.isnan(obj2) or obj2 > 1):
            obj2 = DELTA
        if (np.isnan(obj3) or obj3 > 1):
            obj3 = DELTA

        obj1 += penalty
        obj2 += penalty
        obj3 += penalty

        return [obj1, obj2, obj3]