Ejemplo n.º 1
0
    def transduce(self, sent: ExpressionSequence) -> ExpressionSequence:
        if self.pos_encoding_type == "trigonometric":
            if self.position_encoding_block is None or self.position_encoding_block.shape[
                    2] < len(sent):
                self.initialize_position_encoding(
                    int(len(sent) * 1.2),
                    self.input_dim if self.pos_encoding_combine == "add" else
                    self.pos_encoding_size)
            encoding = dy.inputTensor(
                self.position_encoding_block[0, :, :len(sent)])
        elif self.pos_encoding_type == "embedding":
            encoding = self.positional_embedder.embed_sent(
                len(sent)).as_tensor()
        if self.pos_encoding_type:
            if self.pos_encoding_combine == "add":
                sent = ExpressionSequence(expr_tensor=sent.as_tensor() +
                                          encoding,
                                          mask=sent.mask)
            else:  # concat
                sent = ExpressionSequence(expr_tensor=dy.concatenate(
                    [sent.as_tensor(), encoding]),
                                          mask=sent.mask)

        elif self.pos_encoding_type:
            raise ValueError(f"unknown encoding type {self.pos_encoding_type}")
        for module in self.modules:
            enc_sent = module.transduce(sent)
            sent = enc_sent
        self._final_states = [transducers.FinalTransducerState(sent[-1])]
        return sent
Ejemplo n.º 2
0
 def transduce(self, src: ExpressionSequence) -> ExpressionSequence:
   sent_len = len(src)
   embeddings = dy.strided_select(dy.parameter(self.embedder), [1,1], [0,0], [self.input_dim, sent_len])
   if self.op == 'sum':
     output = embeddings + src.as_tensor()
   elif self.op == 'concat':
     output = dy.concatenate([embeddings, src.as_tensor()])
   else:
     raise ValueError(f'Illegal op {op} in PositionalTransducer (options are "sum"/"concat")')
   output_seq = ExpressionSequence(expr_tensor=output, mask=src.mask)
   self._final_states = [FinalTransducerState(output_seq[-1])]
   return output_seq
Ejemplo n.º 3
0
 def transduce(
     self, src: expression_seqs.ExpressionSequence
 ) -> expression_seqs.ExpressionSequence:
     src_tensor = src.as_tensor()
     out_mask = src.mask
     if self.downsample_by > 1:
         assert len(src_tensor.dim()[0])==2, \
           f"Downsampling only supported for tensors of order two. Found dims {src_tensor.dim()}"
         (hidden_dim, seq_len), batch_size = src_tensor.dim()
         if seq_len % self.downsample_by != 0:
             raise ValueError(
                 "For downsampling, sequence lengths must be multiples of the total reduce factor. "
                 "Configure batcher accordingly.")
         src_tensor = dy.reshape(src_tensor,
                                 (hidden_dim * self.downsample_by,
                                  seq_len // self.downsample_by),
                                 batch_size=batch_size)
         if out_mask:
             out_mask = out_mask.lin_subsampled(
                 reduce_factor=self.downsample_by)
     output = self.transform.transform(src_tensor)
     if self.downsample_by == 1:
         if len(output.dim()) != src_tensor.dim(
         ):  # can happen with seq length 1
             output = dy.reshape(output,
                                 src_tensor.dim()[0],
                                 batch_size=src_tensor.dim()[1])
     output_seq = expression_seqs.ExpressionSequence(expr_tensor=output,
                                                     mask=out_mask)
     self._final_states = [FinalTransducerState(output_seq[-1])]
     return output_seq
Ejemplo n.º 4
0
  def transduce(self, src: ExpressionSequence) -> ExpressionSequence:
    src = src.as_tensor()

    src_height = src.dim()[0][0]
    src_width = src.dim()[0][1]
    # src_channels = 1
    batch_size = src.dim()[1]

    # convolution and pooling layers
    # src dim is ((40, 1000), 128)
    src = padding(src, self.filter_width[0]+3)
    l1 = dy.rectify(dy.conv2d(src, dy.parameter(self.filters1), stride = [self.stride[0], self.stride[0]], is_valid = True)) # ((1, 1000, 64), 128)
    pool1 = dy.maxpooling2d(l1, (1, 4), (1,2), is_valid = True) #((1, 499, 64), 128)

    pool1 = padding(pool1, self.filter_width[1]+3)
    l2 = dy.rectify(dy.conv2d(pool1, dy.parameter(self.filters2), stride = [self.stride[1], self.stride[1]], is_valid = True))# ((1, 499, 512), 128)
    pool2 = dy.maxpooling2d(l2, (1, 4), (1,2), is_valid = True)#((1, 248, 512), 128)

    pool2 = padding(pool2, self.filter_width[2])
    l3 = dy.rectify(dy.conv2d(pool2, dy.parameter(self.filters3), stride = [self.stride[2], self.stride[2]], is_valid = True))# ((1, 248, 1024), 128)
    pool3 = dy.max_dim(l3, d = 1)

    my_norm = dy.l2_norm(pool3) + 1e-6
    output = dy.cdiv(pool3,my_norm)
    output = dy.reshape(output, (self.num_filters[2],), batch_size = batch_size)

    return ExpressionSequence(expr_tensor=output)
Ejemplo n.º 5
0
    def transduce(self, embed_sent: ExpressionSequence) -> ExpressionSequence:
        src = embed_sent.as_tensor()

        sent_len = src.dim()[0][1]
        batch_size = src.dim()[1]
        pad_size = (self.window_receptor -
                    1) / 2  #TODO adapt it also for even window size

        src = dy.concatenate([
            dy.zeroes((self.input_dim, pad_size), batch_size=batch_size), src,
            dy.zeroes((self.input_dim, pad_size), batch_size=batch_size)
        ],
                             d=1)
        padded_sent_len = sent_len + 2 * pad_size

        conv1 = dy.parameter(self.pConv1)
        bias1 = dy.parameter(self.pBias1)
        src_chn = dy.reshape(src, (self.input_dim, padded_sent_len, 1),
                             batch_size=batch_size)
        cnn_layer1 = dy.conv2d_bias(src_chn, conv1, bias1, stride=[1, 1])

        hidden_layer = dy.reshape(cnn_layer1, (self.internal_dim, sent_len, 1),
                                  batch_size=batch_size)
        if self.non_linearity is 'linear':
            hidden_layer = hidden_layer
        elif self.non_linearity is 'tanh':
            hidden_layer = dy.tanh(hidden_layer)
        elif self.non_linearity is 'relu':
            hidden_layer = dy.rectify(hidden_layer)
        elif self.non_linearity is 'sigmoid':
            hidden_layer = dy.logistic(hidden_layer)

        for conv_hid, bias_hid in self.builder_layers:
            hidden_layer = dy.conv2d_bias(hidden_layer,
                                          dy.parameter(conv_hid),
                                          dy.parameter(bias_hid),
                                          stride=[1, 1])
            hidden_layer = dy.reshape(hidden_layer,
                                      (self.internal_dim, sent_len, 1),
                                      batch_size=batch_size)
            if self.non_linearity is 'linear':
                hidden_layer = hidden_layer
            elif self.non_linearity is 'tanh':
                hidden_layer = dy.tanh(hidden_layer)
            elif self.non_linearity is 'relu':
                hidden_layer = dy.rectify(hidden_layer)
            elif self.non_linearity is 'sigmoid':
                hidden_layer = dy.logistic(hidden_layer)
        last_conv = dy.parameter(self.last_conv)
        last_bias = dy.parameter(self.last_bias)
        output = dy.conv2d_bias(hidden_layer,
                                last_conv,
                                last_bias,
                                stride=[1, 1])
        output = dy.reshape(output, (sent_len, self.output_dim),
                            batch_size=batch_size)
        output_seq = ExpressionSequence(expr_tensor=output)
        self._final_states = [FinalTransducerState(output_seq[-1])]
        return output_seq
Ejemplo n.º 6
0
 def transduce(self, seq: ExpressionSequence) -> ExpressionSequence:
     seq_tensor = self.child.transduce(seq).as_tensor() + seq.as_tensor()
     if self.layer_norm:
         d = seq_tensor.dim()
         seq_tensor = dy.reshape(seq_tensor, (d[0][0], ),
                                 batch_size=d[0][1] * d[1])
         seq_tensor = dy.layer_norm(seq_tensor, self.ln_g, self.ln_b)
         seq_tensor = dy.reshape(seq_tensor, d[0], batch_size=d[1])
     return ExpressionSequence(expr_tensor=seq_tensor)
Ejemplo n.º 7
0
    def transduce(
        self, expr_seq: expression_seqs.ExpressionSequence
    ) -> expression_seqs.ExpressionSequence:
        """
    transduce the sequence

    Args:
      expr_seq: expression sequence or list of expression sequences (where each inner list will be concatenated)
    Returns:
      expression sequence
    """

        # Start with a [(length, model_size) x batch] tensor
        # B x T x H -> B x H x T
        x = expr_seq.as_tensor()
        x_len = x.size()[1]
        x_batch = x.size()[0]
        # Get the query key and value vectors
        q = self.lin_q(x).transpose(1, 2).contiguous()
        k = self.lin_k(x).transpose(1, 2).contiguous()
        v = self.lin_v(x).transpose(1, 2).contiguous()
        # q = bq + x * Wq
        # k = bk + x * Wk
        # v = bv + x * Wv

        # Split to batches [(length, head_dim) x batch * num_heads] tensor
        q, k, v = [
            temp.view((x_batch * self.num_heads, self.head_dim, x_len))
            for temp in (q, k, v)
        ]

        # Do scaled dot product [batch*num_heads, length, length], rows are keys, columns are queries
        attn_score = torch.matmul(k.transpose(1, 2), q) / sqrt(self.head_dim)
        if expr_seq.mask is not None:
            mask = torch.Tensor(
                np.repeat(expr_seq.mask.np_arr, self.num_heads, axis=0) *
                -1e10).to(xnmt.device)
            attn_score = attn_score + mask.unsqueeze(2)
        attn_prob = torch.nn.Softmax(dim=1)(attn_score)
        # attn_prob = dy.softmax(attn_score, d=1)
        if self.train and self.dropout > 0.0:
            attn_prob = tt.dropout(attn_prob, self.dropout)
        # Reduce using attention and resize to match [(length, model_size) x batch]
        o = torch.matmul(v, attn_prob).view(x_batch, self.input_dim,
                                            x_len).transpose(1, 2)
        # Final transformation
        o = self.lin_o(o)
        # o = bo + o * Wo

        expr_seq = expression_seqs.ExpressionSequence(expr_tensor=o,
                                                      mask=expr_seq.mask)

        self._final_states = [
            transducers.FinalTransducerState(expr_seq[-1], None)
        ]

        return expr_seq
Ejemplo n.º 8
0
    def transduce(
        self, seq: expression_seqs.ExpressionSequence
    ) -> expression_seqs.ExpressionSequence:

        if self.train and self.dropout > 0.0:
            seq_tensor = dy.dropout(
                self.child.transduce(seq).as_tensor(),
                self.dropout) + seq.as_tensor()
        else:
            seq_tensor = self.child.transduce(
                seq).as_tensor() + seq.as_tensor()
        if self.layer_norm:
            d = seq_tensor.dim()
            seq_tensor = dy.reshape(seq_tensor, (d[0][0], ),
                                    batch_size=d[0][1] * d[1])
            seq_tensor = dy.layer_norm(seq_tensor, self.ln_g, self.ln_b)
            seq_tensor = dy.reshape(seq_tensor, d[0], batch_size=d[1])
        return expression_seqs.ExpressionSequence(expr_tensor=seq_tensor)
Ejemplo n.º 9
0
    def transduce(
        self, seq: expression_seqs.ExpressionSequence
    ) -> expression_seqs.ExpressionSequence:

        if self.train and self.dropout > 0.0:
            seq_tensor = tt.dropout(
                self.child.transduce(seq).as_tensor(),
                self.dropout) + seq.as_tensor()
        else:
            seq_tensor = self.child.transduce(
                seq).as_tensor() + seq.as_tensor()
        if self.layer_norm:
            batch_size = tt.batch_size(seq_tensor)
            merged_seq_tensor = tt.merge_time_batch_dims(seq_tensor)
            transformed_seq_tensor = self.layer_norm_component.transform(
                merged_seq_tensor)
            seq_tensor = tt.unmerge_time_batch_dims(transformed_seq_tensor,
                                                    batch_size)
        return expression_seqs.ExpressionSequence(expr_tensor=seq_tensor)
Ejemplo n.º 10
0
 def transduce(self, src: ExpressionSequence) -> ExpressionSequence:
     src = src.as_tensor()
     # convolutional layer
     src = padding(src,
                   src.dim()[0][0],
                   src.dim()[0][1], self.filter_width, self.stride,
                   src.dim()[1])
     l1 = dy.rectify(
         dy.conv2d(src,
                   dy.parameter(self.filter_conv),
                   stride=[self.stride, self.stride],
                   is_valid=True))
     timestep = l1.dim()[0][1]
     features = l1.dim()[0][2]
     batch_size = l1.dim()[1]
     # transpose l1 to be (timesetp, dim), but keep the batch_size.
     rhn_in = dy.reshape(l1, (timestep, features), batch_size=batch_size)
     rhn_in = [dy.pick(rhn_in, i) for i in range(timestep)]
     for l in range(self.rhn_num_hidden_layers):
         rhn_out = []
         # initialize a random vector for the first state vector, keep the same batch size.
         prev_state = dy.parameter(self.init[l])
         # begin recurrent high way network
         for t in range(timestep):
             for m in range(0, self.rhn_microsteps):
                 H = dy.affine_transform([
                     dy.parameter(self.recur[l][m][1]),
                     dy.parameter(self.recur[l][m][0]), prev_state
                 ])
                 T = dy.affine_transform([
                     dy.parameter(self.recur[l][m][3]),
                     dy.parameter(self.recur[l][m][2]), prev_state
                 ])
                 if m == 0:
                     H += dy.parameter(self.linear[l][0]) * rhn_in[t]
                     T += dy.parameter(self.linear[l][1]) * rhn_in[t]
                 H = dy.tanh(H)
                 T = dy.logistic(T)
                 prev_state = dy.cmult(1 - T, prev_state) + dy.cmult(
                     T, H)  # ((1024, ), batch_size)
             rhn_out.append(prev_state)
         if self.residual and l > 0:
             rhn_out = [sum(x) for x in zip(rhn_out, rhn_in)]
         rhn_in = rhn_out
     # Compute the attention-weighted average of the activations
     rhn_in = dy.concatenate_cols(rhn_in)
     scores = dy.transpose(dy.parameter(self.attention[0][1])) * dy.tanh(
         dy.parameter(self.attention[0][0]) *
         rhn_in)  # ((1,510), batch_size)
     scores = dy.reshape(scores, (scores.dim()[0][1], ),
                         batch_size=scores.dim()[1])
     attn_out = rhn_in * dy.softmax(
         scores
     )  # # rhn_in.as_tensor() is ((1024,510), batch_size) softmax is ((510,), batch_size)
     return ExpressionSequence(expr_tensor=attn_out)
Ejemplo n.º 11
0
 def transduce(self, x: expression_seqs.ExpressionSequence) -> expression_seqs.ExpressionSequence:
   x_T = x.as_transposed_tensor()
   scores = x_T * dy.parameter(self.W)
   if x.mask is not None:
     scores = x.mask.add_to_tensor_expr(scores, multiplicator=-100.0, time_first=True)
   if self.pos_enc_max:
     seq_len = x_T.dim()[0][0]
     pos_enc = self.pos_enc[:seq_len,:]
     scores = dy.cmult(scores, dy.inputTensor(pos_enc))
   attention = dy.softmax(scores)
   output_expr = x.as_tensor() * attention
   return expression_seqs.ExpressionSequence(expr_tensor=output_expr, mask=None)
Ejemplo n.º 12
0
 def exprseq_pooling(self, exprseq):
     # Reduce to vector
     exprseq = ExpressionSequence(
         expr_tensor=exprseq.mask.add_to_tensor_expr(
             exprseq.as_tensor(), -1e10),
         mask=exprseq.mask)
     if exprseq.expr_tensor is not None:
         if len(exprseq.expr_tensor.dim()[0]) > 1:
             return dy.max_dim(exprseq.expr_tensor, d=1)
         else:
             return exprseq.expr_tensor
     else:
         return dy.emax(exprseq.expr_list)
Ejemplo n.º 13
0
 def transduce(
     self, src: expression_seqs.ExpressionSequence
 ) -> expression_seqs.ExpressionSequence:
     sent_len = src.sent_len()
     batch_size = tt.batch_size(src[0])
     embeddings = self.embeddings(
         torch.tensor([list(range(sent_len))] * batch_size).to(xnmt.device))
     # embeddings = dy.strided_select(dy.parameter(self.embedder), [1,1], [0,0], [self.input_dim, sent_len])
     if self.op == 'sum':
         output = embeddings + src.as_tensor()
     elif self.op == 'concat':
         output = tt.concatenate([embeddings, src.as_tensor()])
     else:
         raise ValueError(
             f'Illegal op {op} in PositionalTransducer (options are "sum"/"concat")'
         )
     if self.train and self.dropout > 0.0:
         output = tt.dropout(output, self.dropout)
     output_seq = expression_seqs.ExpressionSequence(expr_tensor=output,
                                                     mask=src.mask)
     self._final_states = [transducers.FinalTransducerState(output_seq[-1])]
     return output_seq
Ejemplo n.º 14
0
  def transduce(self, src: ExpressionSequence) -> ExpressionSequence:
    src = src.as_tensor()

    src_height = src.dim()[0][0]
    src_width = 1
    batch_size = src.dim()[1]

    W = dy.parameter(self.pW)
    b = dy.parameter(self.pb)

    src = dy.reshape(src, (src_height, src_width), batch_size=batch_size) # ((276, 80, 3), 1)
    # convolution and pooling layers
    l1 = (W*src)+b
    output = dy.cdiv(l1,dy.sqrt(dy.squared_norm(l1)))
    return ExpressionSequence(expr_tensor=output)
Ejemplo n.º 15
0
    def __call__(self, x: ExpressionSequence) -> tt.Tensor:
        """
    Move the time-dimension of an input expression into the batch dimension via a reshape.

    Args:
      x: expression of dimensions ((hidden, timesteps), batch_size)

    Returns:
      expression of dimensions ((hidden,), timesteps*batch_size)
    """
        batch_size = x[0].dim()[1]
        model_dim = x[0].dim()[0][0]
        seq_len = x.sent_len()
        total_words = seq_len * batch_size
        input_tensor = x.as_tensor()
        return dy.reshape(input_tensor, (model_dim, ), batch_size=total_words)
Ejemplo n.º 16
0
 def transduce(
     self, src: expression_seqs.ExpressionSequence
 ) -> expression_seqs.ExpressionSequence:
     src_tensor = src.as_tensor()
     out_mask = src.mask
     if self.downsample_by > 1:
         assert src_tensor.dim()==3, \
           f"Downsampling only supported for tensors of order two (+ batch). Found dims {src_tensor.size()}"
         batch_size, seq_len, hidden_dim = src_tensor.size()
         if seq_len % self.downsample_by != 0:
             raise ValueError(
                 "For downsampling, sequence lengths must be multiples of the total reduce factor. "
                 "Configure batcher accordingly.")
         src_tensor = src_tensor.view(
             (batch_size, seq_len // self.downsample_by,
              hidden_dim * self.downsample_by))
         if out_mask:
             out_mask = out_mask.lin_subsampled(
                 reduce_factor=self.downsample_by)
     output = self.transform.transform(src_tensor)
     output_seq = expression_seqs.ExpressionSequence(expr_tensor=output,
                                                     mask=out_mask)
     self._final_states = [FinalTransducerState(output_seq[-1])]
     return output_seq
Ejemplo n.º 17
0
 def transduce(
     self, es: expression_seqs.ExpressionSequence
 ) -> expression_seqs.ExpressionSequence:
     output = self.transform(es.as_tensor(), es.mask)
     return expression_seqs.ExpressionSequence(expr_tensor=output,
                                               mask=es.mask)
Ejemplo n.º 18
0
    def transduce(
        self, expr_seq: expression_seqs.ExpressionSequence
    ) -> expression_seqs.ExpressionSequence:
        """
    transduce the sequence, applying masks if given (masked timesteps simply copy previous h / c)

    Args:
      expr_seq: expression sequence (will be accessed via tensor_expr)
    Return:
      expression sequence
    """

        if isinstance(expr_seq, list):
            mask_out = expr_seq[0].mask
            seq_len = len(expr_seq[0])
            batch_size = expr_seq[0].dim()[1]
            tensors = [e.as_tensor() for e in expr_seq]
            input_tensor = dy.reshape(dy.concatenate(tensors),
                                      (seq_len, 1, self.input_dim),
                                      batch_size=batch_size)
        else:
            mask_out = expr_seq.mask
            seq_len = len(expr_seq)
            batch_size = expr_seq.dim()[1]
            input_tensor = dy.reshape(dy.transpose(expr_seq.as_tensor()),
                                      (seq_len, 1, self.input_dim),
                                      batch_size=batch_size)

        if self.dropout > 0.0 and self.train:
            input_tensor = dy.dropout(input_tensor, self.dropout)

        proj_inp = dy.conv2d_bias(input_tensor,
                                  dy.parameter(self.p_f),
                                  dy.parameter(self.p_b),
                                  stride=(self.stride, 1),
                                  is_valid=False)
        reduced_seq_len = proj_inp.dim()[0][0]
        proj_inp = dy.transpose(
            dy.reshape(proj_inp, (reduced_seq_len, self.hidden_dim * 3),
                       batch_size=batch_size))
        # proj_inp dims: (hidden, 1, seq_len), batch_size
        if self.stride > 1 and mask_out is not None:
            mask_out = mask_out.lin_subsampled(trg_len=reduced_seq_len)

        h = [dy.zeroes(dim=(self.hidden_dim, 1), batch_size=batch_size)]
        c = [dy.zeroes(dim=(self.hidden_dim, 1), batch_size=batch_size)]
        for t in range(reduced_seq_len):
            f_t = dy.logistic(
                dy.strided_select(proj_inp, [], [0, t],
                                  [self.hidden_dim, t + 1]))
            o_t = dy.logistic(
                dy.strided_select(proj_inp, [], [self.hidden_dim, t],
                                  [self.hidden_dim * 2, t + 1]))
            z_t = dy.tanh(
                dy.strided_select(proj_inp, [], [self.hidden_dim * 2, t],
                                  [self.hidden_dim * 3, t + 1]))

            if self.dropout > 0.0 and self.train:
                retention_rate = 1.0 - self.dropout
                dropout_mask = dy.random_bernoulli((self.hidden_dim, 1),
                                                   retention_rate,
                                                   batch_size=batch_size)
                f_t = 1.0 - dy.cmult(
                    dropout_mask, 1.0 - f_t
                )  # TODO: would be easy to make a zoneout dynet operation to save memory

            i_t = 1.0 - f_t

            if t == 0:
                c_t = dy.cmult(i_t, z_t)
            else:
                c_t = dy.cmult(f_t, c[-1]) + dy.cmult(i_t, z_t)
            h_t = dy.cmult(
                o_t, c_t)  # note: LSTM would use dy.tanh(c_t) instead of c_t
            if mask_out is None or np.isclose(
                    np.sum(mask_out.np_arr[:, t:t + 1]), 0.0):
                c.append(c_t)
                h.append(h_t)
            else:
                c.append(
                    mask_out.cmult_by_timestep_expr(c_t, t, True) +
                    mask_out.cmult_by_timestep_expr(c[-1], t, False))
                h.append(
                    mask_out.cmult_by_timestep_expr(h_t, t, True) +
                    mask_out.cmult_by_timestep_expr(h[-1], t, False))

        self._final_states = [transducers.FinalTransducerState(dy.reshape(h[-1], (self.hidden_dim,), batch_size=batch_size), \
                                                               dy.reshape(c[-1], (self.hidden_dim,),
                                                                          batch_size=batch_size))]
        return expression_seqs.ExpressionSequence(expr_list=h[1:],
                                                  mask=mask_out)