def print_insn_detail(insn): # print address, mnemonic and operands print("0x%x:\t%s\t%s" % (insn.address, insn.mnemonic, insn.op_str)) # "data" instruction generated by SKIPDATA option has no detail if insn.id == 0: return if len(insn.operands) > 0: print("\top_count: %u" % len(insn.operands)) c = 0 for i in insn.operands: if i.type == XCORE_OP_REG: print("\t\toperands[%u].type: REG = %s" % (c, insn.reg_name(i.reg))) if i.type == XCORE_OP_IMM: print("\t\toperands[%u].type: IMM = 0x%s" % (c, to_x(i.imm))) if i.type == XCORE_OP_MEM: print("\t\toperands[%u].type: MEM" % c) if i.mem.base != 0: print("\t\t\toperands[%u].mem.base: REG = %s" \ % (c, insn.reg_name(i.mem.base))) if i.mem.index != 0: print("\t\t\toperands[%u].mem.index: REG = %s" \ % (c, insn.reg_name(i.mem.index))) if i.mem.disp != 0: print("\t\t\toperands[%u].mem.disp: 0x%s" \ % (c, to_x(i.mem.disp))) if i.mem.direct != 1: print("\t\t\toperands[%u].mem.direct: -1") c += 1
def print_insn_detail(insn): # print address, mnemonic and operands print("0x%x:\t%s\t%s" % (insn.address, insn.mnemonic, insn.op_str)) # "data" instruction generated by SKIPDATA option has no detail if insn.id == 0: return if len(insn.operands) > 0: print("\top_count: %u" % len(insn.operands)) c = -1 for i in insn.operands: c += 1 if i.type == MIPS_OP_REG: print("\t\toperands[%u].type: REG = %s" % (c, insn.reg_name(i.reg))) if i.type == MIPS_OP_IMM: print("\t\toperands[%u].type: IMM = 0x%s" % (c, to_x(i.imm))) if i.type == MIPS_OP_MEM: print("\t\toperands[%u].type: MEM" % c) if i.mem.base != 0: print("\t\t\toperands[%u].mem.base: REG = %s" \ % (c, insn.reg_name(i.mem.base))) if i.mem.disp != 0: print("\t\t\toperands[%u].mem.disp: 0x%s" \ % (c, to_x(i.mem.disp)))
def print_insn_detail(insn): # print address, mnemonic and operands print("0x%x:\t%s\t%s" % (insn.address, insn.mnemonic, insn.op_str)) # "data" instruction generated by SKIPDATA option has no detail if insn.id == 0: return if len(insn.operands) > 0: print("\top_count: %u" % len(insn.operands)) c = 0 for i in insn.operands: if i.type == TMS320C64X_OP_REG: print("\t\toperands[%u].type: REG = %s" % (c, insn.reg_name(i.reg))) if i.type == TMS320C64X_OP_IMM: print("\t\toperands[%u].type: IMM = 0x%s" % (c, to_x(i.imm))) if i.type == TMS320C64X_OP_MEM: print("\t\toperands[%u].type: MEM" % c) if i.mem.base != 0: print("\t\t\toperands[%u].mem.base: REG = %s" \ % (c, insn.reg_name(i.mem.base))) if i.mem.disptype == TMS320C64X_MEM_DISP_INVALID: print("\t\t\toperands[%u].mem.disptype: Invalid" % (c)) print("\t\t\toperands[%u].mem.disp: 0x%s" \ % (c, to_x(i.mem.disp))) if i.mem.disptype == TMS320C64X_MEM_DISP_CONSTANT: print("\t\t\toperands[%u].mem.disptype: Constant" % (c)) print("\t\t\toperands[%u].mem.disp: 0x%s" \ % (c, to_x(i.mem.disp))) if i.mem.disptype == TMS320C64X_MEM_DISP_REGISTER: print("\t\t\toperands[%u].mem.disptype: Register" % (c)) print("\t\t\toperands[%u].mem.disp: %s" \ % (c, insn.reg_name(i.mem.disp))) print("\t\t\toperands[%u].mem.unit: %u" % (c, i.mem.unit)) if i.mem.direction == TMS320C64X_MEM_DIR_INVALID: print("\t\t\toperands[%u].mem.direction: Invalid" % (c)) if i.mem.direction == TMS320C64X_MEM_DIR_FW: print("\t\t\toperands[%u].mem.direction: Forward" % (c)) if i.mem.direction == TMS320C64X_MEM_DIR_BW: print("\t\t\toperands[%u].mem.direction: Backward" % (c)) if i.mem.modify == TMS320C64X_MEM_MOD_INVALID: print("\t\t\toperands[%u].mem.modify: Invalid" % (c)) if i.mem.modify == TMS320C64X_MEM_MOD_NO: print("\t\t\toperands[%u].mem.modify: No" % (c)) if i.mem.modify == TMS320C64X_MEM_MOD_PRE: print("\t\t\toperands[%u].mem.modify: Pre" % (c)) if i.mem.modify == TMS320C64X_MEM_MOD_POST: print("\t\t\toperands[%u].mem.modify: Post" % (c)) print("\t\t\toperands[%u].mem.scaled: %u" % (c, i.mem.scaled)) if i.type == TMS320C64X_OP_REGPAIR: print("\t\toperands[%u].type: REGPAIR = %s:%s" % (c, insn.reg_name(i.reg + 1), insn.reg_name(i.reg))) c += 1
def get_single_IMM(insn): seg_num = insn.op_count(CS_OP_IMM) if seg_num > 1: print "Extract: too much imm reg!" if seg_num != 1: print "Extract: no imm reg found!" return to_x(insn.op_find(CS_OP_IMM, 1).value.imm)
def print_insn_detail(insn): # print address, mnemonic and operands print("0x%x:\t%s\t%s" % (insn.address, insn.mnemonic, insn.op_str)) # "data" instruction generated by SKIPDATA option has no detail if insn.id == 0: return if len(insn.operands) > 0: print("\top_count: %u" % len(insn.operands)) c = -1 for i in insn.operands: c += 1 if i.type == ARM64_OP_REG: print("\t\toperands[%u].type: REG = %s" % (c, insn.reg_name(i.reg))) if i.type == ARM64_OP_IMM: print("\t\toperands[%u].type: IMM = 0x%s" % (c, to_x(i.imm))) if i.type == ARM64_OP_CIMM: print("\t\toperands[%u].type: C-IMM = %u" % (c, i.imm)) if i.type == ARM64_OP_FP: print("\t\toperands[%u].type: FP = %f" % (c, i.fp)) if i.type == ARM64_OP_MEM: print("\t\toperands[%u].type: MEM" % c) if i.mem.base != 0: print("\t\t\toperands[%u].mem.base: REG = %s" \ % (c, insn.reg_name(i.mem.base))) if i.mem.index != 0: print("\t\t\toperands[%u].mem.index: REG = %s" \ % (c, insn.reg_name(i.mem.index))) if i.mem.disp != 0: print("\t\t\toperands[%u].mem.disp: 0x%s" \ % (c, to_x(i.mem.disp))) if i.shift.type != ARM64_SFT_INVALID and i.shift.value: print("\t\t\tShift: type = %u, value = %u" % (i.shift.type, i.shift.value)) if i.ext != ARM64_EXT_INVALID: print("\t\t\tExt: %u" % i.ext) if insn.writeback: print("\tWrite-back: True") if not insn.cc in [ARM64_CC_AL, ARM64_CC_INVALID]: print("\tCode condition: %u" % insn.cc) if insn.update_flags: print("\tUpdate-flags: True")
def print_insn_detail(insn): # print address, mnemonic and operands print("0x%x:\t%s\t%s" % (insn.address, insn.mnemonic, insn.op_str)) # "data" instruction generated by SKIPDATA option has no detail if insn.id == 0: return print("\taddress mode: %s" % (address_modes[insn.am])) print("\tmodifies flags: %s" % ('true' if insn.modifies_flags != 0 else 'false')) if len(insn.operands) > 0: print("\top_count: %u" % len(insn.operands)) c = -1 for i in insn.operands: c += 1 if i.type == MOS65XX_OP_REG: print("\t\toperands[%u].type: REG = %s" % (c, insn.reg_name(i.reg))) if i.type == MOS65XX_OP_IMM: print("\t\toperands[%u].type: IMM = 0x%s" % (c, to_x(i.imm))) if i.type == MOS65XX_OP_MEM: print("\t\toperands[%u].type: MEM = 0x%s" % (c, to_x(i.mem)))
def test_details(): elffile = get_ELFFile('a.out') code = elffile.get_section_by_name('.text') ops = code.data() addr = code['sh_addr'] md = Cs(CS_ARCH_X86, CS_MODE_64) md.detail = True for insn in md.disasm(ops, addr): print("0x%x:\t%s\t%s" % (insn.address, insn.mnemonic, insn.op_str)) print(map(lambda x: to_x(int(x)), insn.bytes)) imm_count = insn.op_count(X86_OP_IMM) if imm_count == 0: continue bytes_no_imm = [] # Inclusive 'start' and 'end' indexes imm_start = insn.imm_offset imm_end = imm_start + insn.imm_size + 1 for i in range(len(insn.bytes)): if imm_start <= i <= imm_end: continue bytes_no_imm.append(insn.bytes[i]) print(map(lambda x: to_x(int(x)), bytes_no_imm))
def print_insn_detail(mode, insn): def print_string_hex(comment, str): print(comment, end=' '), for c in str: print("0x%02x " % c, end=''), print() # print address, mnemonic and operands print("0x%x:\t%s\t%s" % (insn.address, insn.mnemonic, insn.op_str)) # "data" instruction generated by SKIPDATA option has no detail if insn.id == 0: return # print instruction prefix print_string_hex("\tPrefix:", insn.prefix) # print segment override (if applicable) if insn.segment != X86_REG_INVALID: print("\tSegment override: %s" % insn.reg_name(insn.segment)) # print instruction's opcode print_string_hex("\tOpcode:", insn.opcode) # print operand's size, address size, displacement size & immediate size print("\top_size: %u, addr_size: %u, disp_size: %u, imm_size: %u" \ % (insn.op_size, insn.addr_size, insn.disp_size, insn.imm_size)) # print modRM byte print("\tmodrm: 0x%x" % (insn.modrm)) # print displacement value print("\tdisp: 0x%s" % to_x_32(insn.disp)) # SIB is not available in 16-bit mode if (mode & CS_MODE_16 == 0): # print SIB byte print("\tsib: 0x%x" % (insn.sib)) if (insn.sib): if insn.sib_base != 0: print("\t\tsib_base: %s" % (insn.reg_name(insn.sib_base))) if insn.sib_index != 0: print("\t\tsib_index: %s" % (insn.reg_name(insn.sib_index))) if insn.sib_scale != 0: print("\t\tsib_scale: %d" % (insn.sib_scale)) count = insn.op_count(X86_OP_IMM) if count > 0: print("\timm_count: %u" % count) for i in range(count): op = insn.op_find(X86_OP_IMM, i + 1) print("\t\timms[%u]: 0x%s" % (i + 1, to_x(op.imm))) if len(insn.operands) > 0: print("\top_count: %u" % len(insn.operands)) c = -1 for i in insn.operands: c += 1 if i.type == X86_OP_REG: print("\t\toperands[%u].type: REG = %s" % (c, insn.reg_name(i.reg))) if i.type == X86_OP_IMM: print("\t\toperands[%u].type: IMM = 0x%s" % (c, to_x(i.imm))) if i.type == X86_OP_FP: print("\t\toperands[%u].type: FP = %f" % (c, i.fp)) if i.type == X86_OP_MEM: print("\t\toperands[%u].type: MEM" % c) if i.mem.base != 0: print("\t\t\toperands[%u].mem.base: REG = %s" % (c, insn.reg_name(i.mem.base))) if i.mem.index != 0: print("\t\t\toperands[%u].mem.index: REG = %s" % (c, insn.reg_name(i.mem.index))) if i.mem.scale != 1: print("\t\t\toperands[%u].mem.scale: %u" % (c, i.mem.scale)) if i.mem.disp != 0: print("\t\t\toperands[%u].mem.disp: 0x%s" % (c, to_x(i.mem.disp)))
def print_insn_detail(mode, insn): def print_string_hex(comment, str): print(comment, end=' '), for c in str: print("0x%02x " % c, end=''), print() # print address, mnemonic and operands print("0x%x:\t%s\t%s" % (insn.address, insn.mnemonic, insn.op_str)) # "data" instruction generated by SKIPDATA option has no detail if insn.id == 0: return # print instruction prefix print_string_hex("\tPrefix:", insn.prefix) # print instruction's opcode print_string_hex("\tOpcode:", insn.opcode) # print operand's REX prefix (non-zero value is relavant for x86_64 instructions) print("\trex: 0x%x" % (insn.rex)) # print operand's address size print("\taddr_size: %u" % (insn.addr_size)) # print modRM byte print("\tmodrm: 0x%x" % (insn.modrm)) # print displacement value print("\tdisp: 0x%s" % to_x_32(insn.disp)) # SIB is not available in 16-bit mode if (mode & CS_MODE_16 == 0): # print SIB byte print("\tsib: 0x%x" % (insn.sib)) if (insn.sib): if insn.sib_base != 0: print("\t\tsib_base: %s" % (insn.reg_name(insn.sib_base))) if insn.sib_index != 0: print("\t\tsib_index: %s" % (insn.reg_name(insn.sib_index))) if insn.sib_scale != 0: print("\t\tsib_scale: %d" % (insn.sib_scale)) # SSE CC type if insn.sse_cc != X86_SSE_CC_INVALID: print("\tsse_cc: %u" % (insn.sse_cc)) # AVX CC type if insn.avx_cc != X86_AVX_CC_INVALID: print("\tavx_cc: %u" % (insn.avx_cc)) # AVX Suppress All Exception if insn.avx_sae: print("\tavx_sae: TRUE") # AVX Rounding Mode type if insn.avx_rm != X86_AVX_RM_INVALID: print("\tavx_rm: %u" % (insn.avx_rm)) count = insn.op_count(X86_OP_IMM) if count > 0: print("\timm_count: %u" % count) for i in range(count): op = insn.op_find(X86_OP_IMM, i + 1) print("\t\timms[%u]: 0x%s" % (i + 1, to_x(op.imm))) if len(insn.operands) > 0: print("\top_count: %u" % len(insn.operands)) c = -1 for i in insn.operands: c += 1 if i.type == X86_OP_REG: print("\t\toperands[%u].type: REG = %s" % (c, insn.reg_name(i.reg))) if i.type == X86_OP_IMM: print("\t\toperands[%u].type: IMM = 0x%s" % (c, to_x(i.imm))) if i.type == X86_OP_FP: print("\t\toperands[%u].type: FP = %f" % (c, i.fp)) if i.type == X86_OP_MEM: print("\t\toperands[%u].type: MEM" % c) if i.mem.segment != 0: print("\t\t\toperands[%u].mem.segment: REG = %s" % (c, insn.reg_name(i.mem.segment))) if i.mem.base != 0: print("\t\t\toperands[%u].mem.base: REG = %s" % (c, insn.reg_name(i.mem.base))) if i.mem.index != 0: print("\t\t\toperands[%u].mem.index: REG = %s" % (c, insn.reg_name(i.mem.index))) if i.mem.scale != 1: print("\t\t\toperands[%u].mem.scale: %u" % (c, i.mem.scale)) if i.mem.disp != 0: print("\t\t\toperands[%u].mem.disp: 0x%s" % (c, to_x(i.mem.disp))) # AVX broadcast type if i.avx_bcast != X86_AVX_BCAST_INVALID: print("\t\toperands[%u].avx_bcast: %u" % (c, i.avx_bcast)) # AVX zero opmask {z} if i.avx_zero_opmask: print("\t\toperands[%u].avx_zero_opmask: TRUE" % (c)) print("\t\toperands[%u].size: %u" % (c, i.size))
def print_insn_detail(insn): # print address, mnemonic and operands print("0x%x:\t%s\t%s" % (insn.address, insn.mnemonic, insn.op_str)) # "data" instruction generated by SKIPDATA option has no detail if insn.id == 0: return if len(insn.operands) > 0: print("\top_count: %u" % len(insn.operands)) c = -1 for i in insn.operands: c += 1 if i.type == ARM64_OP_REG: print("\t\toperands[%u].type: REG = %s" % (c, insn.reg_name(i.reg))) if i.type == ARM64_OP_IMM: print("\t\toperands[%u].type: IMM = 0x%s" % (c, to_x(i.imm))) if i.type == ARM64_OP_CIMM: print("\t\toperands[%u].type: C-IMM = %u" % (c, i.imm)) if i.type == ARM64_OP_FP: print("\t\toperands[%u].type: FP = %f" % (c, i.fp)) if i.type == ARM64_OP_MEM: print("\t\toperands[%u].type: MEM" % c) if i.mem.base != 0: print("\t\t\toperands[%u].mem.base: REG = %s" \ % (c, insn.reg_name(i.mem.base))) if i.mem.index != 0: print("\t\t\toperands[%u].mem.index: REG = %s" \ % (c, insn.reg_name(i.mem.index))) if i.mem.disp != 0: print("\t\t\toperands[%u].mem.disp: 0x%s" \ % (c, to_x(i.mem.disp))) if i.type == ARM64_OP_REG_MRS: print("\t\toperands[%u].type: REG_MRS = 0x%x" % (c, i.reg)) if i.type == ARM64_OP_REG_MSR: print("\t\toperands[%u].type: REG_MSR = 0x%x" % (c, i.reg)) if i.type == ARM64_OP_PSTATE: print("\t\toperands[%u].type: PSTATE = 0x%x" % (c, i.pstate)) if i.type == ARM64_OP_SYS: print("\t\toperands[%u].type: SYS = 0x%x" % (c, i.sys)) if i.type == ARM64_OP_PREFETCH: print("\t\toperands[%u].type: PREFETCH = 0x%x" % (c, i.prefetch)) if i.type == ARM64_OP_BARRIER: print("\t\toperands[%u].type: BARRIER = 0x%x" % (c, i.barrier)) if i.shift.type != ARM64_SFT_INVALID and i.shift.value: print("\t\t\tShift: type = %u, value = %u" % (i.shift.type, i.shift.value)) if i.ext != ARM64_EXT_INVALID: print("\t\t\tExt: %u" % i.ext) if i.vas != ARM64_VAS_INVALID: print("\t\t\tVector Arrangement Specifier: 0x%x" % i.vas) if i.vess != ARM64_VESS_INVALID: print("\t\t\tVector Element Size Specifier: %u" % i.vess) if i.vector_index != -1: print("\t\t\tVector Index: %u" % i.vector_index) if insn.writeback: print("\tWrite-back: True") if not insn.cc in [ARM64_CC_AL, ARM64_CC_INVALID]: print("\tCode-condition: %u" % insn.cc) if insn.update_flags: print("\tUpdate-flags: True")
def print_insn_detail(mode, insn): def print_string_hex(comment, str): print(comment, end=' '), for c in str: print("0x%02x " % c, end=''), print() # print address, mnemonic and operands print("0x%x:\t%s\t%s" % (insn.address, insn.mnemonic, insn.op_str)) # "data" instruction generated by SKIPDATA option has no detail if insn.id == 0: return # print instruction prefix print_string_hex("\tPrefix:", insn.prefix) # print instruction's opcode print_string_hex("\tOpcode:", insn.opcode) # print operand's REX prefix (non-zero value is relavant for x86_64 instructions) print("\trex: 0x%x" % (insn.rex)) # print operand's address size print("\taddr_size: %u" % (insn.addr_size)) # print modRM byte print("\tmodrm: 0x%x" % (insn.modrm)) # print modRM offset if insn.modrm_offset != 0: print("\tmodrm_offset: 0x%x" % (insn.modrm_offset)) # print displacement value print("\tdisp: 0x%s" % to_x_32(insn.disp)) # print displacement offset (offset into instruction bytes) if insn.disp_offset != 0: print("\tdisp_offset: 0x%x" % (insn.disp_offset)) # print displacement size if insn.disp_size != 0: print("\tdisp_size: 0x%x" % (insn.disp_size)) # SIB is not available in 16-bit mode if (mode & CS_MODE_16 == 0): # print SIB byte print("\tsib: 0x%x" % (insn.sib)) if (insn.sib): if insn.sib_base != 0: print("\t\tsib_base: %s" % (insn.reg_name(insn.sib_base))) if insn.sib_index != 0: print("\t\tsib_index: %s" % (insn.reg_name(insn.sib_index))) if insn.sib_scale != 0: print("\t\tsib_scale: %d" % (insn.sib_scale)) # XOP CC type if insn.xop_cc != X86_XOP_CC_INVALID: print("\txop_cc: %u" % (insn.xop_cc)) # SSE CC type if insn.sse_cc != X86_SSE_CC_INVALID: print("\tsse_cc: %u" % (insn.sse_cc)) # AVX CC type if insn.avx_cc != X86_AVX_CC_INVALID: print("\tavx_cc: %u" % (insn.avx_cc)) # AVX Suppress All Exception if insn.avx_sae: print("\tavx_sae: TRUE") # AVX Rounding Mode type if insn.avx_rm != X86_AVX_RM_INVALID: print("\tavx_rm: %u" % (insn.avx_rm)) count = insn.op_count(X86_OP_IMM) if count > 0: print("\timm_count: %u" % count) for i in range(count): op = insn.op_find(X86_OP_IMM, i + 1) print("\t\timms[%u]: 0x%s" % (i + 1, to_x(op.imm))) if insn.imm_offset != 0: print("\timm_offset: 0x%x" % (insn.imm_offset)) if insn.imm_size != 0: print("\timm_size: 0x%x" % (insn.imm_size)) if len(insn.operands) > 0: print("\top_count: %u" % len(insn.operands)) c = -1 for i in insn.operands: c += 1 if i.type == X86_OP_REG: print("\t\toperands[%u].type: REG = %s" % (c, insn.reg_name(i.reg))) if i.type == X86_OP_IMM: print("\t\toperands[%u].type: IMM = 0x%s" % (c, to_x(i.imm))) if i.type == X86_OP_MEM: print("\t\toperands[%u].type: MEM" % c) if i.mem.segment != 0: print("\t\t\toperands[%u].mem.segment: REG = %s" % (c, insn.reg_name(i.mem.segment))) if i.mem.base != 0: print("\t\t\toperands[%u].mem.base: REG = %s" % (c, insn.reg_name(i.mem.base))) if i.mem.index != 0: print("\t\t\toperands[%u].mem.index: REG = %s" % (c, insn.reg_name(i.mem.index))) if i.mem.scale != 1: print("\t\t\toperands[%u].mem.scale: %u" % (c, i.mem.scale)) if i.mem.disp != 0: print("\t\t\toperands[%u].mem.disp: 0x%s" % (c, to_x(i.mem.disp))) # AVX broadcast type if i.avx_bcast != X86_AVX_BCAST_INVALID: print("\t\toperands[%u].avx_bcast: %u" % (c, i.avx_bcast)) # AVX zero opmask {z} if i.avx_zero_opmask: print("\t\toperands[%u].avx_zero_opmask: TRUE" % (c)) print("\t\toperands[%u].size: %u" % (c, i.size)) if i.access == CS_AC_READ: print("\t\toperands[%u].access: READ\n" % (c)) elif i.access == CS_AC_WRITE: print("\t\toperands[%u].access: WRITE\n" % (c)) elif i.access == CS_AC_READ | CS_AC_WRITE: print("\t\toperands[%u].access: READ | WRITE\n" % (c)) (regs_read, regs_write) = insn.regs_access() if len(regs_read) > 0: print("\tRegisters read:", end="") for r in regs_read: print(" %s" %(insn.reg_name(r)), end="") print("") if len(regs_write) > 0: print("\tRegisters modified:", end="") for r in regs_write: print(" %s" %(insn.reg_name(r)), end="") print("") if insn.eflags: updated_flags = [] for i in range(0,46): if insn.eflags & (1 << i): updated_flags.append(get_eflag_name(1 << i)) print("\tEFLAGS: %s" % (','.join(p for p in updated_flags)))
def print_insn_detail(mode, insn): def print_string_hex(comment, str): print(comment, end=' '), for c in str: print("0x%02x " % c, end=''), print() # print address, mnemonic and operands print("0x%x:\t%s\t%s" % (insn.address, insn.mnemonic, insn.op_str)) # "data" instruction generated by SKIPDATA option has no detail if insn.id == 0: return # print instruction prefix print_string_hex("\tPrefix:", insn.prefix) # print instruction's opcode print_string_hex("\tOpcode:", insn.opcode) # print operand's REX prefix (non-zero value is relavant for x86_64 instructions) print("\trex: 0x%x" % (insn.rex)) # print operand's address size print("\taddr_size: %u" % (insn.addr_size)) # print modRM byte print("\tmodrm: 0x%x" % (insn.modrm)) # print displacement value print("\tdisp: 0x%s" % to_x_32(insn.disp)) # SIB is not available in 16-bit mode if (mode & CS_MODE_16 == 0): # print SIB byte print("\tsib: 0x%x" % (insn.sib)) if (insn.sib): if insn.sib_base != 0: print("\t\tsib_base: %s" % (insn.reg_name(insn.sib_base))) if insn.sib_index != 0: print("\t\tsib_index: %s" % (insn.reg_name(insn.sib_index))) if insn.sib_scale != 0: print("\t\tsib_scale: %d" % (insn.sib_scale)) # XOP CC type if insn.xop_cc != X86_XOP_CC_INVALID: print("\txop_cc: %u" % (insn.xop_cc)) # SSE CC type if insn.sse_cc != X86_SSE_CC_INVALID: print("\tsse_cc: %u" % (insn.sse_cc)) # AVX CC type if insn.avx_cc != X86_AVX_CC_INVALID: print("\tavx_cc: %u" % (insn.avx_cc)) # AVX Suppress All Exception if insn.avx_sae: print("\tavx_sae: TRUE") # AVX Rounding Mode type if insn.avx_rm != X86_AVX_RM_INVALID: print("\tavx_rm: %u" % (insn.avx_rm)) count = insn.op_count(X86_OP_IMM) if count > 0: print("\timm_count: %u" % count) for i in range(count): op = insn.op_find(X86_OP_IMM, i + 1) print("\t\timms[%u]: 0x%s" % (i + 1, to_x(op.imm))) if len(insn.operands) > 0: print("\top_count: %u" % len(insn.operands)) c = -1 for i in insn.operands: c += 1 if i.type == X86_OP_REG: print("\t\toperands[%u].type: REG = %s" % (c, insn.reg_name(i.reg))) if i.type == X86_OP_IMM: print("\t\toperands[%u].type: IMM = 0x%s" % (c, to_x(i.imm))) if i.type == X86_OP_FP: print("\t\toperands[%u].type: FP = %f" % (c, i.fp)) if i.type == X86_OP_MEM: print("\t\toperands[%u].type: MEM" % c) if i.mem.segment != 0: print("\t\t\toperands[%u].mem.segment: REG = %s" % (c, insn.reg_name(i.mem.segment))) if i.mem.base != 0: print("\t\t\toperands[%u].mem.base: REG = %s" % (c, insn.reg_name(i.mem.base))) if i.mem.index != 0: print("\t\t\toperands[%u].mem.index: REG = %s" % (c, insn.reg_name(i.mem.index))) if i.mem.scale != 1: print("\t\t\toperands[%u].mem.scale: %u" % (c, i.mem.scale)) if i.mem.disp != 0: print("\t\t\toperands[%u].mem.disp: 0x%s" % (c, to_x(i.mem.disp))) # AVX broadcast type if i.avx_bcast != X86_AVX_BCAST_INVALID: print("\t\toperands[%u].avx_bcast: %u" % (c, i.avx_bcast)) # AVX zero opmask {z} if i.avx_zero_opmask: print("\t\toperands[%u].avx_zero_opmask: TRUE" % (c)) print("\t\toperands[%u].size: %u" % (c, i.size)) if i.access == CS_AC_READ: print("\t\toperands[%u].access: READ\n" % (c)) elif i.access == CS_AC_WRITE: print("\t\toperands[%u].access: WRITE\n" % (c)) elif i.access == CS_AC_READ | CS_AC_WRITE: print("\t\toperands[%u].access: READ | WRITE\n" % (c)) (regs_read, regs_write) = insn.regs_access() if len(regs_read) > 0: print("\tRegisters read:", end="") for r in regs_read: print(" %s" % (insn.reg_name(r)), end="") print("") if len(regs_write) > 0: print("\tRegisters modified:", end="") for r in regs_write: print(" %s" % (insn.reg_name(r)), end="") print("")
def print_SecCode(md): print("[*]---- Start SecCode ----") offset_table = Get_SecCode_OffsetTable(md) j = 0 for insn in md.disasm(CODE, BASE_ADDR + START): if insn.id == 0: return reg_name = [] if len(insn.operands) > 0: for i in insn.operands: if i.type == MIPS_OP_REG: reg_name.append(insn.reg_name(i.reg)) if i.type == MIPS_OP_IMM: imm = to_x(i.imm) if i.type == MIPS_OP_MEM: if i.mem.base != 0: mem_base = insn.reg_name(i.mem.base) if i.mem.disp != 0: mem_disp = to_x(i.mem.disp & 0xffffffff) if (DEBUG): print("#0x%x:\t%s\t%s" % (insn.address, insn.mnemonic, insn.op_str)) #sb if insn.mnemonic == "sb": if (rand_list[j]): if (DEBUG): print("\t#MovImm2Reg,0x%s,RFPO," % (mem_disp)) print("\t\tPushImm,0x%s," % (mem_disp)) print("\t\tPopReg,RFPO,") j += 1 else: print("\t#MovImm2Reg,0x%s,RFPO," % (mem_disp)) j += 1 if (rand_list[j]): if (DEBUG): print("\t#MovReg2Mem,%s,%s," % (REG_TABLE[reg_name[0]], REG_TABLE[mem_base])) print("\t\tPushReg,%s," % (REG_TABLE[reg_name[0]])) print("\t\tPopMem,%s," % (REG_TABLE[mem_base])) j += 1 else: print("\t#MovReg2Mem,%s,%s," % (REG_TABLE[reg_name[0]], REG_TABLE[mem_base])) j += 1 #lbu lb if insn.mnemonic == "lbu": if (rand_list[j]): if (DEBUG): print("\t#MovImm2Reg,0x%s,RFPO," % (mem_disp)) print("\t\tPushImm,0x%s," % (mem_disp)) print("\t\tPopReg,RFPO,") j += 1 else: print("\t#MovImm2Reg,0x%s,RFPO," % (mem_disp)) j += 1 if (rand_list[j]): if (DEBUG): print("\t#MovMem2Reg,%s,%s," % (REG_TABLE[mem_base], REG_TABLE[reg_name[0]])) print("\t\tPushMem,%s," % (REG_TABLE[mem_base])) print("\t\tPopReg,%s," % (REG_TABLE[reg_name[0]])) j += 1 else: print("\t#MovMem2Reg,%s,%s," % (REG_TABLE[mem_base], REG_TABLE[reg_name[0]])) j += 1 if insn.mnemonic == "lb": if (rand_list[j]): if (DEBUG): print("\t#MovImm2Reg,0x%s,RFPO," % (mem_disp)) print("\t\tPushImm,0x%s," % (mem_disp)) print("\t\tPopReg,RFPO,") j += 1 else: print("\t#MovImm2Reg,0x%s,RFPO," % (mem_disp)) j += 1 if (rand_list): if (DEBUG): print("\t#MovMem2Reg,%s,%s," % (REG_TABLE[mem_base], REG_TABLE[reg_name[0]])) print("\t\tPushMem,%s," % (REG_TABLE[mem_base])) print("\t\tPopReg,%s," % (REG_TABLE[reg_name[0]])) j += 1 else: print("\t#MovMem2Reg,%s,%s," % (REG_TABLE[mem_base], REG_TABLE[reg_name[0]])) j += 1 #addiu addi addu add if insn.mnemonic == "addiu": if REG_TABLE[reg_name[1]] == "RFP": imm = hex((int(imm, 16) * 4))[2:] if (rand_list[j]): if (DEBUG): print( "\t#AddReg4Imm2Reg,%s,0x%s,%s," % (REG_TABLE[reg_name[1]], imm, REG_TABLE[reg_name[0]])) print("\t\tPushReg,%s," % (REG_TABLE[reg_name[1]])) print("\t\tPushImm,0x%s," % (imm)) print("\t\tAtomAdd,") print("\t\tPopReg,%s," % (REG_TABLE[reg_name[0]])) j += 1 else: print("\t#AddReg4Imm2Reg,%s,0x%s,%s," % (REG_TABLE[reg_name[1]], imm, REG_TABLE[reg_name[0]])) j += 1 if insn.mnemonic == "addi": if REG_TABLE[reg_name[1]] == "RFP": imm = hex((int(imm, 16) * 4))[2:] if (rand_list[j]): if (DEBUG): print( "\t#AddReg4Imm2Reg,%s,0x%s,%s," % (REG_TABLE[reg_name[1]], imm, REG_TABLE[reg_name[0]])) print("\t\tPushReg,%s," % (REG_TABLE[reg_name[1]])) print("\t\tPushImm,0x%s," % (imm)) print("\t\tAtomAdd,") print("\t\tPopReg,%s," % (REG_TABLE[reg_name[0]])) j += 1 else: print("\t#AddReg4Imm2Reg,%s,0x%s,%s," % (REG_TABLE[reg_name[1]], imm, REG_TABLE[reg_name[0]])) j += 1 if insn.mnemonic == "addu": if (rand_list[j]): if (DEBUG): print("\t#AddReg4Reg2Reg,%s,%s,%s," % (REG_TABLE[reg_name[1]], REG_TABLE[reg_name[2]], REG_TABLE[reg_name[0]])) print("\t\tPushReg,%s," % (REG_TABLE[reg_name[1]])) print("\t\tPushReg,%s," % (REG_TABLE[reg_name[2]])) print("\t\tAtomAdd,") print("\t\tPopReg,%s," % (REG_TABLE[reg_name[0]])) j += 1 else: print("\t#AddReg4Reg2Reg,%s,%s,%s," % (REG_TABLE[reg_name[1]], REG_TABLE[reg_name[2]], REG_TABLE[reg_name[0]])) j += 1 if insn.mnemonic == "add": if (rand_list[j]): if (DEBUG): print("\t#AddReg4Reg2Reg,%s,%s,%s," % (REG_TABLE[reg_name[1]], REG_TABLE[reg_name[2]], REG_TABLE[reg_name[0]])) print("\t\tPushReg,%s," % (REG_TABLE[reg_name[1]])) print("\t\tPushReg,%s," % (REG_TABLE[reg_name[2]])) print("\t\tAtomAdd,") print("\t\tPopReg,%s," % (REG_TABLE[reg_name[0]])) j += 1 else: print("\t#AddReg4Reg2Reg,%s,%s,%s," % (REG_TABLE[reg_name[1]], REG_TABLE[reg_name[2]], REG_TABLE[reg_name[0]])) j += 1 #subiu subi subu sub if insn.mnemonic == "subiu": if (rand_list[j]): if (DEBUG): print( "\t#SubReg4Imm2Reg,%s,0x%s,%s," % (REG_TABLE[reg_name[1]], imm, REG_TABLE[reg_name[0]])) print("\t\tPushReg,%s," % (REG_TABLE[reg_name[1]])) print("\t\tPushImm,0x%s," % (imm)) print("\t\tAtomSub,") print("\t\tPopReg,%s," % (REG_TABLE[reg_name[0]])) j += 1 else: print("\t#SubReg4Imm2Reg,%s,0x%s,%s," % (REG_TABLE[reg_name[1]], imm, REG_TABLE[reg_name[0]])) j += 1 if insn.mnemonic == "subi": if (rand_list[j]): if (DEBUG): print( "\t#SubReg4Imm2Reg,%s,0x%s,%s," % (REG_TABLE[reg_name[1]], imm, REG_TABLE[reg_name[0]])) print("\t\tPushReg,%s," % (REG_TABLE[reg_name[1]])) print("\t\tPushImm,0x%s," % (imm)) print("\t\tAtomSub,") print("\t\tPopReg,%s," % (REG_TABLE[reg_name[0]])) j += 1 else: print("\t#SubReg4Imm2Reg,%s,0x%s,%s," % (REG_TABLE[reg_name[1]], imm, REG_TABLE[reg_name[0]])) j += 1 if insn.mnemonic == "subu": if (rand_list[j]): if (DEBUG): print("\t#SubReg4Reg2Reg,%s,%s,%s," % (REG_TABLE[reg_name[1]], REG_TABLE[reg_name[2]], REG_TABLE[reg_name[0]])) print("\t\tPushReg,%s," % (REG_TABLE[reg_name[1]])) print("\t\tPushReg,%s," % (REG_TABLE[reg_name[2]])) print("\t\tAtomSub,") print("\t\tPopReg,%s," % (REG_TABLE[reg_name[0]])) j += 1 else: print("\t#SubReg4Reg2Reg,%s,%s,%s," % (REG_TABLE[reg_name[1]], REG_TABLE[reg_name[2]], REG_TABLE[reg_name[0]])) j += 1 if insn.mnemonic == "sub": if (rand_list[j]): if (DEBUG): print("\t#SubReg4Reg2Reg,%s,%s,%s," % (REG_TABLE[reg_name[1]], REG_TABLE[reg_name[2]], REG_TABLE[reg_name[0]])) print("\t\tPushReg,%s," % (REG_TABLE[reg_name[1]])) print("\t\tPushReg,%s," % (REG_TABLE[reg_name[2]])) print("\t\tAtomSub,") print("\t\tPopReg,%s," % (REG_TABLE[reg_name[0]])) j += 1 else: print("\t#SubReg4Reg2Reg,%s,%s,%s," % (REG_TABLE[reg_name[1]], REG_TABLE[reg_name[2]], REG_TABLE[reg_name[0]])) j += 1 #muliu muli mulu mul if insn.mnemonic == "muliu": if (rand_list[j]): if (DEBUG): print( "\t#MulReg4Imm2Reg,%s,0x%s,%s," % (REG_TABLE[reg_name[1]], imm, REG_TABLE[reg_name[0]])) print("\t\tPushReg,%s," % (REG_TABLE[reg_name[1]])) print("\t\tPushImm,0x%s," % (imm)) print("\t\tAtomMul,") print("\t\tPopReg,%s," % (REG_TABLE[reg_name[0]])) j += 1 else: print("\t#MulReg4Imm2Reg,%s,0x%s,%s," % (REG_TABLE[reg_name[1]], imm, REG_TABLE[reg_name[0]])) j += 1 if insn.mnemonic == "muli": if (rand_list[j]): if (DEBUG): print( "\t#MulReg4Imm2Reg,%s,0x%s,%s," % (REG_TABLE[reg_name[1]], imm, REG_TABLE[reg_name[0]])) print("\t\tPushReg,%s," % (REG_TABLE[reg_name[1]])) print("\t\tPushImm,0x%s," % (imm)) print("\t\tAtomMul,") print("\t\tPopReg,%s," % (REG_TABLE[reg_name[0]])) j += 1 else: print("\t#MulReg4Imm2Reg,%s,0x%s,%s," % (REG_TABLE[reg_name[1]], imm, REG_TABLE[reg_name[0]])) j += 1 if insn.mnemonic == "mulu": if (rand_list[j]): if (DEBUG): print("\t#MulReg4Reg2Reg,%s,%s,%s," % (REG_TABLE[reg_name[1]], REG_TABLE[reg_name[2]], REG_TABLE[reg_name[0]])) print("\t\tPushReg,%s," % (REG_TABLE[reg_name[1]])) print("\t\tPushReg,%s," % (REG_TABLE[reg_name[2]])) print("\t\tAtomMul,") print("\t\tPopReg,%s," % (REG_TABLE[reg_name[0]])) j += 1 else: print("\t#MulReg4Reg2Reg,%s,%s,%s," % (REG_TABLE[reg_name[1]], REG_TABLE[reg_name[2]], REG_TABLE[reg_name[0]])) j += 1 if insn.mnemonic == "mul": if (rand_list[j]): if (DEBUG): print("\t#MulReg4Reg2Reg,%s,%s,%s," % (REG_TABLE[reg_name[1]], REG_TABLE[reg_name[2]], REG_TABLE[reg_name[0]])) print("\t\tPushReg,%s," % (REG_TABLE[reg_name[1]])) print("\t\tPushReg,%s," % (REG_TABLE[reg_name[2]])) print("\t\tAtomMul,") print("\t\tPopReg,%s," % (REG_TABLE[reg_name[0]])) j += 1 else: print("\t#MulReg4Reg2Reg,%s,%s,%s," % (REG_TABLE[reg_name[1]], REG_TABLE[reg_name[2]], REG_TABLE[reg_name[0]])) j += 1 #andi andiu andu and if insn.mnemonic == "andi": if (rand_list[j]): if (DEBUG): print( "\t#AndReg4Imm2Reg,%s,0x%s,%s," % (REG_TABLE[reg_name[1]], imm, REG_TABLE[reg_name[0]])) print("\t\tPushReg,%s," % (REG_TABLE[reg_name[1]])) print("\t\tPushImm,0x%s," % (imm)) print("\t\tAtomAnd,") print("\t\tPopReg,%s," % (REG_TABLE[reg_name[0]])) j += 1 else: print("\t#AndReg4Imm2Reg,%s,0x%s,%s," % (REG_TABLE[reg_name[1]], imm, REG_TABLE[reg_name[0]])) j += 1 if insn.mnemonic == "andiu": if (rand_list[j]): if (DEBUG): print( "\t#AndReg4Imm2Reg,%s,0x%s,%s," % (REG_TABLE[reg_name[1]], imm, REG_TABLE[reg_name[0]])) print("\t\tPushReg,%s," % (REG_TABLE[reg_name[1]])) print("\t\tPushImm,0x%s," % (imm)) print("\t\tAtomAnd,") print("\t\tPopReg,%s," % (REG_TABLE[reg_name[0]])) j += 1 else: print("\t#AndReg4Imm2Reg,%s,0x%s,%s," % (REG_TABLE[reg_name[1]], imm, REG_TABLE[reg_name[0]])) j += 1 if insn.mnemonic == "andu": if (rand_list[j]): if (DEBUG): print("\t#AndReg4Reg2Reg,%s,%s,%s," % (REG_TABLE[reg_name[1]], REG_TABLE[reg_name[2]], REG_TABLE[reg_name[0]])) print("\t\tPushReg,%s," % (REG_TABLE[reg_name[1]])) print("\t\tPushReg,%s," % (REG_TABLE[reg_name[2]])) print("\t\tAtomAnd,") print("\t\tPopReg,%s," % (REG_TABLE[reg_name[0]])) j += 1 else: print("\t#AndReg4Reg2Reg,%s,%s,%s," % (REG_TABLE[reg_name[1]], REG_TABLE[reg_name[2]], REG_TABLE[reg_name[0]])) j += 1 if insn.mnemonic == "and": if (rand_list[j]): if (DEBUG): print("\t#AndReg4Reg2Reg,%s,%s,%s," % (REG_TABLE[reg_name[1]], REG_TABLE[reg_name[2]], REG_TABLE[reg_name[0]])) print("\t\tPushReg,%s," % (REG_TABLE[reg_name[1]])) print("\t\tPushReg,%s," % (REG_TABLE[reg_name[2]])) print("\t\tAtomAnd,") print("\t\tPopReg,%s," % (REG_TABLE[reg_name[0]])) j += 1 else: print("\t#AndReg4Reg2Reg,%s,%s,%s," % (REG_TABLE[reg_name[1]], REG_TABLE[reg_name[2]], REG_TABLE[reg_name[0]])) j += 1 #sll sllv if insn.mnemonic == "sll": if (rand_list[j]): if (DEBUG): print( "\t#SllReg4Imm2Reg,%s,0x%s,%s," % (REG_TABLE[reg_name[1]], imm, REG_TABLE[reg_name[0]])) print("\t\tPushReg,%s," % (REG_TABLE[reg_name[1]])) print("\t\tPushImm,0x%s," % (imm)) print("\t\tAtomSll,") print("\t\tPopReg,%s," % (REG_TABLE[reg_name[0]])) j += 1 else: print("\t#SllReg4Imm2Reg,%s,0x%s,%s," % (REG_TABLE[reg_name[1]], imm, REG_TABLE[reg_name[0]])) j += 1 if insn.mnemonic == "sllv": if (rand_list[j]): if (DEBUG): print("\t#SllReg4Reg2Reg,%s,%s,%s," % (REG_TABLE[reg_name[1]], REG_TABLE[reg_name[2]], REG_TABLE[reg_name[0]])) print("\t\tPushReg,%s," % (REG_TABLE[reg_name[1]])) print("\t\tPushReg,%s," % (REG_TABLE[reg_name[2]])) print("\t\tAtomSll,") print("\t\tPopReg,%s," % (REG_TABLE[reg_name[0]])) j += 1 else: print("\t#SllReg4Reg2Reg,%s,%s,%s," % (REG_TABLE[reg_name[1]], REG_TABLE[reg_name[2]], REG_TABLE[reg_name[0]])) j += 1 #sra srl srav srlv if insn.mnemonic == "sra": if (rand_list[j]): if (DEBUG): print( "\t#SraReg4Imm2Reg,%s,0x%s,%s," % (REG_TABLE[reg_name[1]], imm, REG_TABLE[reg_name[0]])) print("\t\tPushReg,%s," % (REG_TABLE[reg_name[1]])) print("\t\tPushImm,0x%s," % (imm)) print("\t\tAtomSra,") print("\t\tPopReg,%s," % (REG_TABLE[reg_name[0]])) j += 1 else: print("\t#SraReg4Imm2Reg,%s,0x%s,%s," % (REG_TABLE[reg_name[1]], imm, REG_TABLE[reg_name[0]])) j += 1 if insn.mnemonic == "srl": if (rand_list[j]): if (DEBUG): print( "\t#SraReg4Imm2Reg,%s,0x%s,%s," % (REG_TABLE[reg_name[1]], imm, REG_TABLE[reg_name[0]])) print("\t\tPushReg,%s," % (REG_TABLE[reg_name[1]])) print("\t\tPushImm,0x%s," % (imm)) print("\t\tAtomSra,") print("\t\tPopReg,%s," % (REG_TABLE[reg_name[0]])) j += 1 else: print("\t#SraReg4Imm2Reg,%s,0x%s,%s," % (REG_TABLE[reg_name[1]], imm, REG_TABLE[reg_name[0]])) j += 1 if insn.mnemonic == "srav": if (rand_list[j]): if (DEBUG): print("\t#SraReg4Reg2Reg,%s,%s,%s," % (REG_TABLE[reg_name[1]], REG_TABLE[reg_name[2]], REG_TABLE[reg_name[0]])) print("\t\tPushReg,%s," % (REG_TABLE[reg_name[1]])) print("\t\tPushReg,%s," % (REG_TABLE[reg_name[2]])) print("\t\tAtomSra,") print("\t\tPopReg,%s," % (REG_TABLE[reg_name[0]])) j += 1 else: print("\t#SraReg4Reg2Reg,%s,%s,%s," % (REG_TABLE[reg_name[1]], REG_TABLE[reg_name[2]], REG_TABLE[reg_name[0]])) j += 1 if insn.mnemonic == "srlv": if (rand_list[j]): if (DEBUG): print("\t#SraReg4Reg2Reg,%s,%s,%s," % (REG_TABLE[reg_name[1]], REG_TABLE[reg_name[2]], REG_TABLE[reg_name[0]])) print("\t\tPushReg,%s," % (REG_TABLE[reg_name[1]])) print("\t\tPushReg,%s," % (REG_TABLE[reg_name[2]])) print("\t\tAtomSra,") print("\t\tPopReg,%s," % (REG_TABLE[reg_name[0]])) j += 1 else: print("\t#SraReg4Reg2Reg,%s,%s,%s," % (REG_TABLE[reg_name[1]], REG_TABLE[reg_name[2]], REG_TABLE[reg_name[0]])) j += 1 #xor xori if insn.mnemonic == "xor": if (rand_list[j]): if (DEBUG): print("\t#XorReg4Reg2Reg,%s,%s,%s," % (REG_TABLE[reg_name[1]], REG_TABLE[reg_name[2]], REG_TABLE[reg_name[0]])) print("\t\tPushReg,%s," % (REG_TABLE[reg_name[1]])) print("\t\tPushReg,%s," % (REG_TABLE[reg_name[2]])) print("\t\tAtomXor,") print("\t\tPopReg,%s," % (REG_TABLE[reg_name[0]])) j += 1 else: print("\t#XorReg4Reg2Reg,%s,%s,%s," % (REG_TABLE[reg_name[1]], REG_TABLE[reg_name[2]], REG_TABLE[reg_name[0]])) j += 1 if insn.mnemonic == "xori": if (rand_list[j]): if (DEBUG): print( "\t#XorReg4Imm2Reg,%s,0x%s,%s," % (REG_TABLE[reg_name[1]], imm, REG_TABLE[reg_name[0]])) print("\t\tPushReg,%s," % (REG_TABLE[reg_name[1]])) print("\t\tPushImm,0x%s," % (imm)) print("\t\tAtomXor,") print("\t\tPopReg,%s," % (REG_TABLE[reg_name[0]])) j += 1 else: print("\t#XorReg4Imm2Reg,%s,0x%s,%s," % (REG_TABLE[reg_name[1]], imm, REG_TABLE[reg_name[0]])) j += 1 #nor nori if insn.mnemonic == "nor": if (rand_list[j]): if (DEBUG): print("\t#NorReg4Reg2Reg,%s,%s,%s," % (REG_TABLE[reg_name[1]], REG_TABLE[reg_name[2]], REG_TABLE[reg_name[0]])) print("\t\tPushReg,%s," % (REG_TABLE[reg_name[1]])) print("\t\tPushReg,%s," % (REG_TABLE[reg_name[2]])) print("\t\tAtomNor,") print("\t\tPopReg,%s," % (REG_TABLE[reg_name[0]])) j += 1 else: print("\t#NorReg4Reg2Reg,%s,%s,%s," % (REG_TABLE[reg_name[1]], REG_TABLE[reg_name[2]], REG_TABLE[reg_name[0]])) j += 1 if insn.mnemonic == "nori": if (rand_list[j]): if (DEBUG): print( "\t#NorReg4Imm2Reg,%s,0x%s,%s," % (REG_TABLE[reg_name[1]], imm, REG_TABLE[reg_name[0]])) print("\t\tPushReg,%s," % (REG_TABLE[reg_name[1]])) print("\t\tPushImm,0x%s," % (imm)) print("\t\tAtomNor,") print("\t\tPopReg,%s," % (REG_TABLE[reg_name[0]])) j += 1 else: print("\t#NorReg4Imm2Reg,%s,0x%s,%s," % (REG_TABLE[reg_name[1]], imm, REG_TABLE[reg_name[0]])) j += 1 #sltiu slti slt sltu if insn.mnemonic == "sltiu": print("\tSetLessThanImm,%s,0x%s,%s," % (REG_TABLE[reg_name[1]], imm, REG_TABLE[reg_name[0]])) if insn.mnemonic == "slti": print("\tSetLessThanImm,%s,0x%s,%s," % (REG_TABLE[reg_name[1]], imm, REG_TABLE[reg_name[0]])) if insn.mnemonic == "slt": print("\tSetLessThanReg,%s,%s,%s," % (REG_TABLE[reg_name[1]], REG_TABLE[reg_name[2]], REG_TABLE[reg_name[0]])) if insn.mnemonic == "sltu": print("\tSetLessThanReg,%s,%s,%s," % (REG_TABLE[reg_name[1]], REG_TABLE[reg_name[2]], REG_TABLE[reg_name[0]])) #benz bne bqez beq b if insn.mnemonic == "bnez": offset_index = (int(imm, 16) - (BASE_ADDR + START)) / 4 b_offset = offset_table[offset_index] print("\tBranchNotEquelZero,%s,%s," % (REG_TABLE[reg_name[0]], b_offset)) if insn.mnemonic == "bne": offset_index = (int(imm, 16) - (BASE_ADDR + START)) / 4 b_offset = offset_table[offset_index] print("\tBranchNotEquelReg,%s,%s,%s," % (REG_TABLE[reg_name[0]], REG_TABLE[reg_name[1]], b_offset)) if insn.mnemonic == "beqz": offset_index = (int(imm, 16) - (BASE_ADDR + START)) / 4 b_offset = offset_table[offset_index] print("\tBranchIfEquelZero,%s,%s," % (REG_TABLE[reg_name[0]], b_offset)) if insn.mnemonic == "beq": offset_index = (int(imm, 16) - (BASE_ADDR + START)) / 4 b_offset = offset_table[offset_index] print("\tBranchIfEquelReg,%s,%s,%s," % (REG_TABLE[reg_name[0]], REG_TABLE[reg_name[1]], b_offset)) if insn.mnemonic == "b": offset_index = (int(imm, 16) - (BASE_ADDR + START)) / 4 b_offset = offset_table[offset_index] print("\tJmp,%s," % (b_offset)) #nop if insn.mnemonic == "nop": print("\tNop,") reg_name = [] print("\tRet,") print("[*]---- Finish vmCode ----")