Ejemplo n.º 1
0
 def diagonal_move_action_string(self, state, is_wrapping):
     puzzle = XPuzzle(self.rows, self.cols, state)
     tile_moved = puzzle.diagonal_move(is_wrapping)
     if( tile_moved != -1):
         return {'key': puzzle.current_state_to_string(), 'tile_moved': tile_moved}
     else:
         return -1
Ejemplo n.º 2
0
 def wrapping_move_action_string(self, state, wrap_col = False):
     puzzle = XPuzzle(self.rows, self.cols, state)
     tile_moved = puzzle.wrapping_move(wrap_col)
     if( tile_moved != -1):
         return {'key': puzzle.current_state_to_string(), 'tile_moved': tile_moved}
     else:
         return -1
Ejemplo n.º 3
0
 def normal_move_action_string(self, state, action):
     puzzle = XPuzzle(self.rows, self.cols, state)
     tile_moved = puzzle.regular_move(action)
     if( tile_moved != -1):
         return {'key': puzzle.current_state_to_string(), 'tile_moved': tile_moved}
     else:
         return -1
Ejemplo n.º 4
0
 def reset(self, initial_state):
     self.close_list = PriorityQueue()
     self.open_list = PriorityQueue()
     self.puzzle = XPuzzle(self.rows, self.columns, initial_state)
     self.initial_state = (0, copy.deepcopy(self.puzzle.arr), 0, 0, 0, 0,
                           None, 0)
     self.is_goal_state = False
     self.ignore_move = ''
     self.search_space = {}
Ejemplo n.º 5
0
    def test_is_goal_state_false_should_pass(self):
        puzzle1 = XPuzzle.from_array([1, 2, 3, 5, 0, 4, 6, 7])
        puzzle2 = XPuzzle.from_array([1, 2, 3, 4, 5, 6, 0, 7])
        puzzle3 = XPuzzle.from_array([1, 3, 5, 7, 2, 4, 0, 6])
        puzzle4 = XPuzzle.from_array([2, 4, 6, 7, 1, 3, 5, 0])
        puzzle5 = XPuzzle.from_array([5, 6, 7, 0, 1, 2, 3, 4])

        self.assertFalse(puzzle1.is_goal_state())
        self.assertFalse(puzzle2.is_goal_state())
        self.assertFalse(puzzle3.is_goal_state())
        self.assertFalse(puzzle4.is_goal_state())
        self.assertFalse(puzzle5.is_goal_state())
Ejemplo n.º 6
0
    def test_from_array_custom_size_should_pass(self):
        data_array: List[int] = [
            3,
            0,
            1,
            4,
            2,
            5,
            6,
            7,
            8,
            9,
            10,
            11,
            12,
            13,
            14,
            15,
            16,
            17,
        ]
        puzzle_to_test1 = XPuzzle.from_array(data_array, (3, 6))
        puzzle_to_test2 = XPuzzle.from_array(data_array, (6, 3))

        self.assertTrue(
            np.array_equal(
                np.array([[3, 0, 1, 4, 2, 5], [6, 7, 8, 9, 10, 11],
                          [12, 13, 14, 15, 16, 17]]),
                puzzle_to_test1.state,
            ),
            "Should be True",
        )
        self.assertEqual((3, 6), puzzle_to_test1.shape, "Should be equivalent")

        self.assertTrue(
            np.array_equal(
                np.array([
                    [3, 0, 1],
                    [4, 2, 5],
                    [6, 7, 8],
                    [9, 10, 11],
                    [12, 13, 14],
                    [15, 16, 17],
                ]),
                puzzle_to_test2.state,
            ),
            "Should be True",
        )
        self.assertEqual((6, 3), puzzle_to_test2.shape, "Should be equivalent")
Ejemplo n.º 7
0
    def test_from_file_should_pass(self):
        puzzles_to_test: List[XPuzzle] = XPuzzle.from_file(
            r"./samplePuzzles.txt")

        self.assertEqual(3, len(puzzles_to_test), "There should be 3 puzzles")

        self.assertTrue(
            np.array_equal(np.array([[3, 0, 1, 4], [2, 6, 5, 7]]),
                           puzzles_to_test[0].state),
            "Should be True",
        )
        self.assertEqual((2, 4), puzzles_to_test[0].shape,
                         "should be equivalent")

        self.assertTrue(
            np.array_equal(np.array([[6, 3, 4, 7], [1, 2, 5, 0]]),
                           puzzles_to_test[1].state),
            "Should be True",
        )
        self.assertEqual((2, 4), puzzles_to_test[1].shape,
                         "should be equivalent")

        self.assertTrue(
            np.array_equal(np.array([[1, 0, 3, 6], [5, 2, 7, 4]]),
                           puzzles_to_test[2].state),
            "Should be equivalent",
        )
        self.assertEqual((2, 4), puzzles_to_test[2].shape,
                         "should be equivalent")
Ejemplo n.º 8
0
 def test_from_array_should_pass(self):
     data_array: List[int] = [3, 0, 1, 4, 2, 6, 5, 7]
     to_test: XPuzzle = XPuzzle.from_array(data_array)
     self.assertTrue(
         np.array_equal(np.array([[3, 0, 1, 4], [2, 6, 5, 7]]),
                        to_test.state),
         "Should be equivalent",
     )
     self.assertEqual((2, 4), to_test.shape, "Should be equivalent")
Ejemplo n.º 9
0
 def __init__(self, puzzle, rows, columns):
     #self.read_input_file(filename)
     self.inputs = [puzzle]
     self.goal_state1 = [[
         '1',
         '2',
         '3',
         '4',
     ], ['5', '6', '7', '0']]
     self.goal_state2 = [['1', '3', '5', '7'], ['2', '4', '6', '0']]
     #self.heuristics = ['h1', 'h2', 'h0']
     self.heuristics = ['h1', 'h2']
     self.heuristic = ''
     self.rows = 2
     self.columns = 4
     self.puzzle = XPuzzle(self.rows, self.columns, puzzle)
     #self.goal_state1 = [['1', '2', '3', '4',],['5', '6', '7', '8'],['9','10','11','0']]
     #self.goal_state2 = [['1', '4', '7', '10'],['2','5','8','11'],['3','6','9','0']]
     self.analysis = {}
Ejemplo n.º 10
0
    def test_from_array_wrong_size_should_fail(self):
        data_array1: List[int] = [3, 0, 1, 4, 2, 6, 5, 7]
        with self.assertRaises(AssertionError):
            XPuzzle.from_array(data_array1, (1, 1))

        data_array2: List[int] = [3, 0, 1, 4, 2, 6, 5, 7, 8]
        with self.assertRaises(AssertionError):
            XPuzzle.from_array(data_array2)

        data_array3: List[int] = [3, 0, 1, 4, 2, 6]
        with self.assertRaises(AssertionError):
            XPuzzle.from_array(data_array3)
Ejemplo n.º 11
0
                        default=r"samplePuzzles.txt",
                        type=str)
    parser.add_argument('-s',
                        '--shape',
                        dest='shape',
                        default=(2, 4),
                        nargs=2,
                        type=int)
    parser.add_argument('-astar', '--astar', dest='astar', action='store_true')
    parser.add_argument('-gbf', '--greedy', dest='gbf', action='store_true')
    parser.add_argument('-ucs', '--uniform', dest='ucs', action='store_true')

    args = parser.parse_args()

    shape: Tuple[int, int] = tuple(args.shape)  #type: ignore
    puzzles = XPuzzle.from_file(args.filename, shape)

    output_dir = "results/{}".format(args.filename[:-4])

    if not os.path.isdir(output_dir):
        os.mkdir(output_dir)

    astar: bool = args.astar
    gbf: bool = args.gbf
    ucs: bool = args.ucs

    if not gbf + ucs + astar == 1:
        sys.exit("Invalid search type")

    filename = 'astar'
    search_func = a_star.a_star
Ejemplo n.º 12
0
class AStar:
    #def __init__(self, filename, rows, columns):
    def __init__(self, puzzle, rows, columns):
        #self.read_input_file(filename)
        self.inputs = [puzzle]
        self.goal_state1 = [[
            '1',
            '2',
            '3',
            '4',
        ], ['5', '6', '7', '0']]
        self.goal_state2 = [['1', '3', '5', '7'], ['2', '4', '6', '0']]
        #self.heuristics = ['h1', 'h2', 'h0']
        self.heuristics = ['h1', 'h2']
        self.heuristic = ''
        self.rows = 2
        self.columns = 4
        self.puzzle = XPuzzle(self.rows, self.columns, puzzle)
        #self.goal_state1 = [['1', '2', '3', '4',],['5', '6', '7', '8'],['9','10','11','0']]
        #self.goal_state2 = [['1', '4', '7', '10'],['2','5','8','11'],['3','6','9','0']]
        self.analysis = {}

    def reset(self, initial_state):
        self.close_list = PriorityQueue()
        self.open_list = PriorityQueue()
        self.puzzle = XPuzzle(self.rows, self.columns, initial_state)
        self.initial_state = (0, copy.deepcopy(self.puzzle.arr), 0, 0, 0, 0,
                              None, 0)
        self.is_goal_state = False
        self.ignore_move = ''
        self.search_space = {}

    def read_input_file(self, filename):
        with open(filename) as f:
            self.inputs = f.readlines()
        # you may also want to remove whitespace characters like `\n` at the end of each line
        self.inputs = [x.strip() for x in self.inputs]
        #print(self.inputs)

    def add_to_search(self, successor_state):
        if (not repr(successor_state[1]) in self.search_space):
            self.search_space[repr(
                successor_state[1])] = str(successor_state[0]) + " " + str(
                    successor_state[5]) + " " + str(
                        successor_state[4]) + " " + str(
                            self.stringify_state(successor_state[1]))

    def add_successors_to_open_list(self, state):
        #print("current zero", self.puzzle.zero_position)
        valid_moves = self.puzzle.find_valid_moves()

        for move in valid_moves:
            if move == self.ignore_move:
                continue
            successor, cost, tile_changed = self.swap(
                copy.deepcopy(state[1]), move, self.puzzle.zero_position)

            g_n = state[5] + cost
            #choose heuristic
            h_n = 0
            if (self.heuristic == 'h1'):
                h_n = self.get_hamming_distance(successor)
            elif (self.heuristic == 'h2'):
                h_n = self.get_manhattan_distance(successor)
            elif (self.heuristic == 'h0'):
                h_n = self.get_h0(successor)
            f_n = h_n + g_n

            successor_state = (f_n, successor, move, cost, h_n, g_n, state,
                               tile_changed)
            self.add_to_search(successor_state)

            temp_state = successor_state[1]

            #check if exists in closed list
            new_close_list = PriorityQueue()
            place_in_open = False
            for s in self.close_list.queue:
                if temp_state == s[1]:
                    if successor_state[0] < s[0]:
                        self.open_list.put(successor_state)
                        place_in_open = True
                        #print('better closed')
                else:
                    new_close_list.put(s)
            self.close_list = new_close_list
            if place_in_open:
                continue

            #check if exists in open list
            new_open_list = PriorityQueue()
            replaced = False
            for s in self.open_list.queue:
                if temp_state == s[1]:
                    if successor_state[0] < s[0]:
                        new_open_list.put(successor_state)
                        replaced = True
                        #print('better open')
                else:
                    new_open_list.put(s)
            self.open_list = new_open_list
            if replaced:
                continue

            # if its not already in open or closed then simply add into openlist
            self.open_list.put(successor_state)

    def swap(self, state, move, zero_position):
        zero0, zero1 = zero_position[0], zero_position[1]
        if (move == 'up'):
            state[zero0][zero1] = state[zero0 - 1][zero1]
            state[zero0 - 1][zero1] = '0'
            cost = 1
            tile_changed = state[zero0][zero1]
        elif (move == 'down'):
            state[zero0][zero1] = state[zero0 + 1][zero1]
            state[zero0 + 1][zero1] = '0'
            cost = 1
            tile_changed = state[zero0][zero1]
        elif (move == 'left'):
            state[zero0][zero1] = state[zero0][zero1 - 1]
            state[zero0][zero1 - 1] = '0'
            cost = 1
            tile_changed = state[zero0][zero1]
        elif (move == 'right'):
            state[zero0][zero1] = state[zero0][zero1 + 1]
            state[zero0][zero1 + 1] = '0'
            cost = 1
            tile_changed = state[zero0][zero1]
        elif (move == 'top_left_wrap'):
            state[zero0][zero1] = state[zero0][-1]
            state[zero0][-1] = '0'
            cost = 2
            tile_changed = state[zero0][zero1]
        elif (move == 'top_right_wrap'):
            state[zero0][zero1] = state[zero0][0]
            state[zero0][0] = '0'
            cost = 2
            tile_changed = state[zero0][zero1]
        elif (move == 'bottom_left_wrap'):
            state[zero0][zero1] = state[zero0][-1]
            state[zero0][-1] = '0'
            cost = 2
            tile_changed = state[zero0][zero1]
        elif (move == 'bottom_right_wrap'):
            state[zero0][zero1] = state[zero0][0]
            state[zero0][0] = '0'
            cost = 2
            tile_changed = state[zero0][zero1]
        elif (move == 'top_left_diagonal_wrap'):
            state[zero0][zero1] = state[-1][-1]
            state[-1][-1] = '0'
            cost = 3
            tile_changed = state[zero0][zero1]
        elif (move == 'top_right_diagonal_wrap'):
            state[zero0][zero1] = state[-1][0]
            state[-1][0] = '0'
            cost = 3
            tile_changed = state[zero0][zero1]
        elif (move == 'bottom_left_diagonal_wrap'):
            state[zero0][zero1] = state[0][-1]
            state[0][-1] = '0'
            cost = 3
            tile_changed = state[zero0][zero1]
        elif (move == 'bottom_right_diagonal_wrap'):
            state[zero0][zero1] = state[0][0]
            state[0][0] = '0'
            cost = 3
            tile_changed = state[zero0][zero1]
        elif (move == 'top_left_diagonal_adjacent'):
            state[zero0][zero1] = state[zero0 + 1][zero1 + 1]
            state[zero0 + 1][zero1 + 1] = '0'
            cost = 3
            tile_changed = state[zero0][zero1]
        elif (move == 'top_right_diagonal_adjacent'):
            state[zero0][zero1] = state[zero0 + 1][zero1 - 1]
            state[zero0 + 1][zero1 - 1] = '0'
            cost = 3
            tile_changed = state[zero0][zero1]
        elif (move == 'bottom_left_diagonal_adjacent'):
            state[zero0][zero1] = state[zero0 - 1][zero1 + 1]
            state[zero0 - 1][zero1 + 1] = '0'
            cost = 3
            tile_changed = state[zero0][zero1]
        elif (move == 'bottom_right_diagonal_adjacent'):
            state[zero0][zero1] = state[zero0 - 1][zero1 - 1]
            state[zero0 - 1][zero1 - 1] = '0'
            cost = 3
            tile_changed = state[zero0][zero1]
        return state, cost, tile_changed

    def ensure_ignore(self, move):
        if (move == 'up'):
            self.ignore_move = 'down'
        elif (move == 'down'):
            self.ignore_move = 'up'
        elif (move == 'left'):
            self.ignore_move = 'right'
        elif (move == 'right'):
            self.ignore_move = 'left'
        elif (move == 'top_left_wrap'):
            self.ignore_move = 'top_right_wrap'
        elif (move == 'top_right_wrap'):
            self.ignore_move = 'top_left_wrap'
        elif (move == 'bottom_left_wrap'):
            self.ignore_move = 'bottom_right_wrap'
        elif (move == 'bottom_right_wrap'):
            self.ignore_move = 'bottom_left_wrap'
        elif (move == 'top_left_diagonal_wrap'):
            self.ignore_move = 'bottom_right_diagonal_wrap'
        elif (move == 'top_right_diagonal_wrap'):
            self.ignore_move = 'bottom_left_diagonal_wrap'
        elif (move == 'bottom_left_diagonal_wrap'):
            self.ignore_move = 'top_right_diagonal_wrap'
        elif (move == 'bottom_right_diagonal_wrap'):
            self.ignore_move = 'top_left_diagonal_wrap'

    def update_zero_position(self, chosen_state):
        s = np.array(chosen_state[1])
        s = np.where(s == '0')
        self.puzzle.zero_position = (s[0][0], s[1][0])

    #h0
    def get_h0(self, successor_state):
        return 0 if successor_state[-1][-1] == '0' else 1

    #h1
    def get_hamming_distance(self, successor_state):
        hamming_distances = []
        for index, goal_state in enumerate(
            [self.goal_state1, self.goal_state2]):
            np_goal = np.asarray(goal_state).astype(np.int)
            np_succ = np.asarray(successor_state).astype(np.int)
            hamming_distances.append(np.count_nonzero(np_goal - np_succ))
        return min(hamming_distances)

    #h2
    def get_manhattan_distance(self, successor_state):
        manhattan_distances = []
        for index, goal_state in enumerate(
            [self.goal_state1, self.goal_state2]):
            np_goal = np.asarray(goal_state)
            np_succ = np.asarray(successor_state)
            manhattan_distances.append(0)
            for i in range(self.puzzle.cols * self.puzzle.rows):
                beg = np.where(np_succ == str(i))
                beg_row = beg[0][0]
                beg_col = beg[1][0]

                dest = np.where(np_goal == str(i))
                dest_row = dest[0][0]
                dest_col = dest[1][0]

                dist = abs(dest_row - beg_row) + abs(dest_col - beg_col)
                manhattan_distances[index] += dist
        return min(manhattan_distances)

    def stringify_state(self, state):
        output = ""
        for row in state:
            output += " ".join(row) + " "
        return output

    def run_algo(self):
        for input_i, x in enumerate(self.inputs):
            for h in self.heuristics:
                print('Computing', str(x), h)
                self.reset(x)
                self.heuristic = h

                start = time.time()
                chosen_state = self.initial_state
                if (chosen_state[1] == self.goal_state1
                        or chosen_state[1] == self.goal_state2):
                    self.is_goal_state = True
                i = 0

                is_no_solution = False
                while (not self.is_goal_state):
                    if (time.time() - start > 60):
                        is_no_solution = True
                        break
                    self.add_successors_to_open_list(chosen_state)
                    if (self.open_list.empty()):
                        break
                    chosen_state = self.open_list.get()
                    self.update_zero_position(chosen_state)
                    self.ensure_ignore(chosen_state[2])
                    if (chosen_state[1] == self.goal_state1
                            or chosen_state[1] == self.goal_state2):
                        self.is_goal_state = True
                        break
                    self.close_list.put(copy.deepcopy(chosen_state))
                    i = i + 1

                #done
                end = time.time()

                #output solution and search
                nodes = []
                while (not chosen_state == None):
                    nodes.append(chosen_state)
                    chosen_state = chosen_state[6]
                nodes = nodes[::-1]  #reverses list

                #output the search space
                with open(str(input_i) + "_astar-" + h + "_search.txt",
                          'w') as f:
                    for key, value in self.search_space.items():
                        f.write(value + "\n")

                #print the solution space
                with open(str(input_i) + "_astar-" + h + "_solution.txt",
                          'w') as f:
                    cost = 0
                    for node in nodes:
                        f.write(
                            str(node[7]) + " " + str(node[3]) + " " +
                            self.stringify_state(node[1]) + "\n")
                        cost += node[3]
                    f.write(str(cost) + " " + str(round((end - start), 5)))

                #handle_no_solution
                if is_no_solution:
                    print("No solution")
                    self.analysis[h] = {
                        'total cost': None,
                        'found_a_solution': self.is_goal_state,
                        'solution_path_length': len(list(nodes)),
                        'search_path_length':
                        len(list(self.search_space.items())),
                        'execution_time': (end - start)
                    }
                    with open(
                            str(input_i) + "_astar-" + h + "_search.txt",
                            'w') as f:
                        f.write("no_solution\n")
                    with open(
                            str(input_i) + "_astar-" + h + "_solution.txt",
                            'w') as f:
                        f.write("no_solution\n")
                else:
                    self.analysis[h] = {
                        'total cost': cost,
                        'found_a_solution': self.is_goal_state,
                        'solution_path_length': len(list(nodes)),
                        'search_path_length':
                        len(list(self.search_space.items())),
                        'execution_time': (end - start)
                    }
                    print(self.analysis[h])
        return self.analysis


# algo = AStar("3 0 1 4 2 6 5 7", 2, 4)
# algo.run_algo()

#TODO: Optimize h_0 and print to files instead of console.
Ejemplo n.º 13
0
 def test_repr_should_pass(self):
     data_array: List[int] = [3, 0, 1, 4, 2, 6, 5, 7]
     to_test: XPuzzle = XPuzzle.from_array(data_array)
     expected = "3 0 1 4\n2 6 5 7"
     result = to_test.__repr__()
     self.assertEqual(expected, result, "Should be the same")
Ejemplo n.º 14
0
 def test_find_valid_moves_should_pass(self):
     try:
         puzzle = XPuzzle.from_array([3, 0, 1, 4, 2, 6, 5, 7])
         puzzle.find_valid_moves()
     except Exception as exc:
         self.fail(traceback.format_exc())
Ejemplo n.º 15
0
 def test_is_goal_state_should_pass(self):
     puzzle1 = XPuzzle.from_array([1, 2, 3, 4, 5, 6, 7, 0])
     puzzle2 = XPuzzle.from_array([1, 3, 5, 7, 2, 4, 6, 0])
     self.assertTrue(puzzle1.is_goal_state())
     self.assertTrue(puzzle2.is_goal_state())
Ejemplo n.º 16
0
 def test_eq_should_pass(self):
     puzzle1 = XPuzzle.from_array([3, 0, 1, 4, 2, 6, 5, 7])
     puzzle2 = XPuzzle.from_array([3, 0, 1, 4, 2, 6, 5, 7])
     self.assertTrue(puzzle1 == puzzle2)