Ejemplo n.º 1
0
def data_focal_stats():
    data = np.arange(16).reshape(4, 4)
    cellsize = (1, 1)
    kernel = circle_kernel(*cellsize, 1.5)
    expected_result = np.asarray([
        # mean
        [[1.66666667, 2., 3., 4.], [4.25, 5., 6., 6.75],
         [8.25, 9., 10., 10.75], [11., 12., 13., 13.33333333]],
        # max
        [[4., 5., 6., 7.], [8., 9., 10., 11.], [12., 13., 14., 15.],
         [13., 14., 15., 15.]],
        # min
        [[0., 0., 1., 2.], [0., 1., 2., 3.], [4., 5., 6., 7.],
         [8., 9., 10., 11.]],
        # range
        [[4., 5., 5., 5.], [8., 8., 8., 8.], [8., 8., 8., 8.],
         [5., 5., 5., 4.]],
        # std
        [[1.69967317, 1.87082869, 1.87082869, 2.1602469],
         [2.86138079, 2.60768096, 2.60768096, 2.86138079],
         [2.86138079, 2.60768096, 2.60768096, 2.86138079],
         [2.1602469, 1.87082869, 1.87082869, 1.69967317]],
        # var
        [[2.88888889, 3.5, 3.5, 4.66666667], [8.1875, 6.8, 6.8, 8.1875],
         [8.1875, 6.8, 6.8, 8.1875], [4.66666667, 3.5, 3.5, 2.88888889]],
        # sum
        [[5., 8., 12., 12.], [17., 25., 30., 27.], [33., 45., 50., 43.],
         [33., 48., 52., 40.]]
    ])
    return data, kernel, expected_result
Ejemplo n.º 2
0
def test_kernel(kernel_circle_1_1_1, kernel_annulus_2_2_2_1):
    kernel_circle = circle_kernel(1, 1, 1)
    assert isinstance(kernel_circle, np.ndarray)
    np.testing.assert_allclose(kernel_circle,
                               kernel_circle_1_1_1,
                               equal_nan=True)

    kernel_annulus = annulus_kernel(2, 2, 2, 1)
    assert isinstance(kernel_annulus, np.ndarray)
    np.testing.assert_allclose(kernel_annulus,
                               kernel_annulus_2_2_2_1,
                               equal_nan=True)
Ejemplo n.º 3
0
def test_hotspot_gpu_equals_cpu():
    n, m = 10, 10
    data = np.zeros((n, m), dtype=float)

    nan_cells = [(i, i) for i in range(m)]
    for cell in nan_cells:
        data[cell[0], cell[1]] = np.nan

    # add some extreme values
    hot_region = [(1, 1), (1, 2), (1, 3),
                  (2, 1), (2, 2), (2, 3),
                  (3, 1), (3, 2), (3, 3)]
    cold_region = [(7, 7), (7, 8), (7, 9),
                   (8, 7), (8, 8), (8, 9),
                   (9, 7), (9, 8), (9, 9)]
    for p in hot_region:
        data[p[0], p[1]] = 10000
    for p in cold_region:
        data[p[0], p[1]] = -10000

    numpy_agg = xr.DataArray(data, dims=['y', 'x'])
    numpy_agg['x'] = np.linspace(0, n, n)
    numpy_agg['y'] = np.linspace(0, m, m)

    cellsize_x, cellsize_y = calc_cellsize(numpy_agg)
    kernel = circle_kernel(cellsize_x, cellsize_y, 2.0)
    # numpy case
    numpy_hotspots = hotspots(numpy_agg, kernel)

    # cupy case
    import cupy

    cupy_agg = xr.DataArray(cupy.asarray(data))
    cupy_hotspots = hotspots(cupy_agg, kernel)

    assert isinstance(cupy_hotspots.data, cupy.ndarray)
    assert np.isclose(
        numpy_hotspots, cupy_hotspots.data.get(), equal_nan=True
    ).all()

    # dask + cupy case not implemented
    dask_cupy_agg = xr.DataArray(
        da.from_array(cupy.asarray(data), chunks=(3, 3))
    )
    with pytest.raises(NotImplementedError) as e_info:
        hotspots(dask_cupy_agg, kernel)
        assert e_info
Ejemplo n.º 4
0
def test_focal_stats_cpu():
    data = np.arange(16).reshape(4, 4)
    numpy_agg = xr.DataArray(data)
    dask_numpy_agg = xr.DataArray(da.from_array(data, chunks=(3, 3)))

    cellsize = (1, 1)
    kernel = circle_kernel(*cellsize, 1.5)

    expected_results = np.asarray([
        # mean
        [[1.66666667, 2., 3., 4.], [4.25, 5., 6., 6.75],
         [8.25, 9., 10., 10.75], [11., 12., 13., 13.33333333]],
        # max
        [[4., 5., 6., 7.], [8., 9., 10., 11.], [12., 13., 14., 15.],
         [13., 14., 15., 15.]],
        # min
        [[0., 0., 1., 2.], [0., 1., 2., 3.], [4., 5., 6., 7.],
         [8., 9., 10., 11.]],
        # range
        [[4., 5., 5., 5.], [8., 8., 8., 8.], [8., 8., 8., 8.],
         [5., 5., 5., 4.]],
        # std
        [[1.69967317, 1.87082869, 1.87082869, 2.1602469],
         [2.86138079, 2.60768096, 2.60768096, 2.86138079],
         [2.86138079, 2.60768096, 2.60768096, 2.86138079],
         [2.1602469, 1.87082869, 1.87082869, 1.69967317]],
        # var
        [[2.88888889, 3.5, 3.5, 4.66666667], [8.1875, 6.8, 6.8, 8.1875],
         [8.1875, 6.8, 6.8, 8.1875], [4.66666667, 3.5, 3.5, 2.88888889]],
        # sum
        [[5., 8., 12., 12.], [17., 25., 30., 27.], [33., 45., 50., 43.],
         [33., 48., 52., 40.]]
    ])

    numpy_focalstats = focal_stats(numpy_agg, kernel)
    general_output_checks(numpy_agg,
                          numpy_focalstats,
                          verify_attrs=False,
                          expected_results=expected_results)
    assert numpy_focalstats.ndim == 3

    dask_numpy_focalstats = focal_stats(dask_numpy_agg, kernel)
    general_output_checks(dask_numpy_agg,
                          dask_numpy_focalstats,
                          verify_attrs=False,
                          expected_results=expected_results)
Ejemplo n.º 5
0
def test_kernel():
    data = convolve_2d_data
    m, n = data.shape
    agg = xr.DataArray(data, dims=['y', 'x'])
    agg['x'] = np.linspace(0, n, n)
    agg['y'] = np.linspace(0, m, m)

    cellsize_x, cellsize_y = calc_cellsize(agg)

    kernel1 = circle_kernel(cellsize_x, cellsize_y, 2)
    expected_kernel1 = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]])
    assert isinstance(kernel1, np.ndarray)
    np.testing.assert_allclose(kernel1, expected_kernel1, equal_nan=True)

    kernel2 = annulus_kernel(cellsize_x, cellsize_y, 2, 0.5)
    expected_kernel2 = np.array([[0, 1, 0], [1, 0, 1], [0, 1, 0]])
    assert isinstance(kernel2, np.ndarray)
    np.testing.assert_allclose(kernel2, expected_kernel2, equal_nan=True)
Ejemplo n.º 6
0
def test_hotspot_gpu_equals_cpu():
    n, m = 10, 10
    data = np.asarray([[np.nan, 0., 0., 0., 0., 0., 0., 0., 0., 0.],
                       [0., 10000., 10000., 10000., 0., 0., 0., 0., 0., 0.],
                       [0., 10000., 10000., 10000., 0., 0., 0., 0., 0., 0.],
                       [0., 10000., 10000., 10000., 0., 0., 0., 0., 0., 0.],
                       [0., 0., 0., 0., np.nan, 0., 0., 0., 0., 0.],
                       [0., 0., 0., 0., 0., np.nan, 0., 0., 0., 0.],
                       [0., 0., 0., 0., 0., 0., np.nan, 0., 0., 0.],
                       [0., 0., 0., 0., 0., 0., 0., -10000., -10000., -10000.],
                       [0., 0., 0., 0., 0., 0., 0., -10000., -10000., -10000.],
                       [0., 0., 0., 0., 0., 0., 0., -10000., -10000.,
                        -10000.]])
    numpy_agg = xr.DataArray(data, dims=['y', 'x'])
    numpy_agg['x'] = np.linspace(0, n, n)
    numpy_agg['y'] = np.linspace(0, m, m)

    cellsize_x, cellsize_y = calc_cellsize(numpy_agg)
    kernel = circle_kernel(cellsize_x, cellsize_y, 2.0)

    # numpy case
    numpy_hotspots = hotspots(numpy_agg, kernel)

    # cupy case
    import cupy
    cupy_agg = xr.DataArray(cupy.asarray(data))
    cupy_hotspots = hotspots(cupy_agg, kernel)

    np.testing.assert_allclose(numpy_hotspots.data,
                               cupy_hotspots.data.get(),
                               equal_nan=True)

    # dask + cupy case not implemented
    dask_cupy_agg = xr.DataArray(
        da.from_array(cupy.asarray(data), chunks=(3, 3)))
    with pytest.raises(NotImplementedError) as e_info:
        hotspots(dask_cupy_agg, kernel)
        assert e_info
Ejemplo n.º 7
0
def test_hotspots():
    n, m = 10, 10
    data = np.asarray([[np.nan, 0., 0., 0., 0., 0., 0., 0., 0., 0.],
                       [0., 10000., 10000., 10000., 0., 0., 0., 0., 0., 0.],
                       [0., 10000., 10000., 10000., 0., 0., 0., 0., 0., 0.],
                       [0., 10000., 10000., 10000., 0., 0., 0., 0., 0., 0.],
                       [0., 0., 0., 0., np.nan, 0., 0., 0., 0., 0.],
                       [0., 0., 0., 0., 0., np.nan, 0., 0., 0., 0.],
                       [0., 0., 0., 0., 0., 0., np.nan, 0., 0., 0.],
                       [0., 0., 0., 0., 0., 0., 0., -10000., -10000., -10000.],
                       [0., 0., 0., 0., 0., 0., 0., -10000., -10000., -10000.],
                       [0., 0., 0., 0., 0., 0., 0., -10000., -10000.,
                        -10000.]])
    numpy_agg = xr.DataArray(data, dims=['y', 'x'])
    numpy_agg['x'] = np.linspace(0, n, n)
    numpy_agg['y'] = np.linspace(0, m, m)

    cellsize_x, cellsize_y = calc_cellsize(numpy_agg)
    kernel = circle_kernel(cellsize_x, cellsize_y, 2.0)

    expected_results = np.array(
        [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 90, 0, 0, 0, 0, 0, 0, 0],
         [0, 90, 95, 90, 0, 0, 0, 0, 0, 0], [0, 0, 90, 0, 0, 0, 0, 0, 0, 0],
         [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
         [0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, -90, 0],
         [0, 0, 0, 0, 0, 0, 0, -90, -95, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
        dtype=np.int8)

    # numpy case
    numpy_hotspots = hotspots(numpy_agg, kernel)
    general_output_checks(numpy_agg, numpy_hotspots, expected_results)

    # dask + numpy
    dask_numpy_agg = xr.DataArray(da.from_array(data, chunks=(3, 3)))
    dask_numpy_hotspots = hotspots(dask_numpy_agg, kernel)
    general_output_checks(dask_numpy_agg, dask_numpy_hotspots,
                          expected_results)
Ejemplo n.º 8
0
def test_hotspot():
    n, m = 10, 10
    data = np.zeros((n, m), dtype=float)

    all_idx = zip(*np.where(data == 0))

    nan_cells = [(i, i) for i in range(m)]
    for cell in nan_cells:
        data[cell[0], cell[1]] = np.nan

    # add some extreme values
    hot_region = [(1, 1), (1, 2), (1, 3),
                  (2, 1), (2, 2), (2, 3),
                  (3, 1), (3, 2), (3, 3)]
    cold_region = [(7, 7), (7, 8), (7, 9),
                   (8, 7), (8, 8), (8, 9),
                   (9, 7), (9, 8), (9, 9)]
    for p in hot_region:
        data[p[0], p[1]] = 10000
    for p in cold_region:
        data[p[0], p[1]] = -10000

    numpy_agg = xr.DataArray(data, dims=['y', 'x'])
    numpy_agg['x'] = np.linspace(0, n, n)
    numpy_agg['y'] = np.linspace(0, m, m)
    cellsize_x, cellsize_y = calc_cellsize(numpy_agg)

    kernel = circle_kernel(cellsize_x, cellsize_y, 2.0)

    no_significant_region = [id for id in all_idx if id not in hot_region and
                             id not in cold_region]

    # numpy case
    numpy_hotspots = hotspots(numpy_agg, kernel)

    # dask + numpy
    dask_numpy_agg = xr.DataArray(da.from_array(data, chunks=(3, 3)))
    dask_numpy_hotspots = hotspots(dask_numpy_agg, kernel)

    assert isinstance(dask_numpy_hotspots.data, da.Array)

    # both output same results
    assert np.isclose(numpy_hotspots.data, dask_numpy_hotspots.data.compute(),
                      equal_nan=True).all()

    # check output's properties
    # output must be an xarray DataArray
    assert isinstance(numpy_hotspots, xr.DataArray)
    assert isinstance(numpy_hotspots.values, np.ndarray)
    assert issubclass(numpy_hotspots.values.dtype.type, np.int8)

    # shape, dims, coords, attr preserved
    assert numpy_agg.shape == numpy_hotspots.shape
    assert numpy_agg.dims == numpy_hotspots.dims
    assert numpy_agg.attrs == numpy_hotspots.attrs
    for coord in numpy_agg.coords:
        assert np.all(numpy_agg[coord] == numpy_hotspots[coord])

    # no nan in output
    assert not np.isnan(np.min(numpy_hotspots))

    # output of extreme regions are non-zeros
    # hot spots
    hot_spot = np.asarray([numpy_hotspots[p] for p in hot_region])
    assert np.all(hot_spot >= 0)
    assert np.sum(hot_spot) > 0
    # cold spots
    cold_spot = np.asarray([numpy_hotspots[p] for p in cold_region])
    assert np.all(cold_spot <= 0)
    assert np.sum(cold_spot) < 0
    # output of no significant regions are 0s
    no_sign = np.asarray([numpy_hotspots[p] for p in no_significant_region])
    assert np.all(no_sign == 0)