Ejemplo n.º 1
0
 def test_direct_collocation_polynomial_control(self):
     model, problem = self._create_model_and_problem()
     solution_method = DirectMethod(problem,
                                    degree=3,
                                    degree_control=3,
                                    finite_elements=20,
                                    discretization_scheme='collocation',
                                    nlpsol_opts=self.nlpsol_opts)
     result = solution_method.solve()
     print(result.objective_opt_problem)
     self.assertAlmostEqual(result.objective_opt_problem,
                            self.answer_obj_value['direct_polynomial'],
                            delta=self.obj_tol)
Ejemplo n.º 2
0
 def test_direct_multiple_shooting_explicit_polynomial_control(self):
     model, problem = self._create_model_and_problem()
     solution_method = DirectMethod(
         problem,
         degree=3,
         degree_control=3,
         finite_elements=20,
         integrator_type='explicit',
         discretization_scheme='multiple-shooting',
         nlpsol_opts=self.nlpsol_opts)
     result = solution_method.solve()
     print(result.objective_opt_problem)
     self.assertAlmostEqual(result.objective_opt_problem,
                            self.answer_obj_value['direct_polynomial'],
                            delta=self.obj_tol)
Ejemplo n.º 3
0
from yaocptool.modelling import SystemModel
from yaocptool.modelling import OptimalControlProblem
from yaocptool.methods import DirectMethod

# PART 1
model = SystemModel(name="simple_model")
x = model.create_state("x")  # vector of state variables
u = model.create_control("u")  # vector of control variables

# Include the dynamic equation
ode = [-x + u]
model.include_equations(ode=ode)

# Print model information
print(model)

# Part 2
problem = OptimalControlProblem(model, x_0=[1], t_f=10, obj={"Q": 1, "R": 1})

# Part 3
# Initialize a DirectMethod to solve the OCP using collocation
solution_method = DirectMethod(
    problem, finite_elements=20, discretization_scheme="collocation"
)

# Solve the problem and get the result
result = solution_method.solve()

# Make one plot with the element x[0] (the first state) and one plot with the control u[0]
result.plot([{"x": [0]}, {"u": [0]}])
Ejemplo n.º 4
0
model.include_equations(ode=vertcat(mtimes(a, x) + mtimes(b, u)))

problem = OptimalControlProblem(
    model,
    obj={
        "Q": DM.eye(2),
        "R": DM.eye(2)
    },
    x_0=[1, 1],
)

problem.delta_u_max = [0.05, 0.05]
problem.delta_u_min = [-0.05, -0.05]
problem.last_u = [0, 0]

solution_method = DirectMethod(
    problem,
    degree=3,
    degree_control=1,
    finite_elements=20,
    # integrator_type='implicit',
    # discretization_scheme = 'collocation'
)

result = solution_method.solve()

result.plot([{"x": [0, 1]}, {"u": [0, 1]}])  # {'x': [0]},

result = solution_method.solve(last_u=[0, 1])
result.plot([{"x": [0, 1]}, {"u": [0, 1]}])  # {'x': [0]},
Ejemplo n.º 5
0
)

# create ocp
problem = OptimalControlProblem(model)
problem.t_f = 10
# problem.L = mtimes(x.T, x) + u ** 2
problem.S = mtimes(x.T, x) + u**2 + b**2
problem.x_0 = [0, 1]
problem.set_theta_as_optimization_theta(b, -0.5, 0.5)
# problem.include_equality(problem.p_opt + 0.25)
problem.include_time_inequality(+u + x[0], when="end")

# instantiate a solution method
solution_method = DirectMethod(
    problem,
    discretization_scheme="collocation",
    degree_control=1,
)
# theta = create_constant_theta(1, 1, 10)

# initial_guess = solution_method.discretizer.create_initial_guess_with_simulation(p=[1])
# solution = solution_method.solve(p=[1], theta=theta, initial_guess=initial_guess)
solution = solution_method.solve(p=[1], x_0=[2, 3, 0])

solution.plot([
    {
        "x": ["x_0", "x_1"]
    },
    {
        "y": ["y_0", "y_1"]
    },
Ejemplo n.º 6
0
from manual_tests.models.linear_models import MIMO2x2, StabilizationMIMO2x2
from manual_tests.models.vanderpol import VanDerPol, VanDerPolStabilization
from yaocptool.methods import DirectMethod

sys.path.append(abspath(dirname(dirname(__file__))))

# model = VanDerPol()
# problem = VanDerPolStabilization(model)

model = MIMO2x2()
problem = StabilizationMIMO2x2(model)

for discretization_scheme in ['collocation', 'multiple-shooting'][1:]:
    solution_method = DirectMethod(problem,
                                   degree=3,
                                   degree_control=3,
                                   finite_elements=20,
                                   integrator_type='implicit',
                                   discretization_scheme=discretization_scheme)

    result = solution_method.solve()
    result.plot([  # {'x': [0]},
        {
            'x': 'all'
        }, {
            'u': 'all'
        }
    ])
# x, y, u, t= solution_method.plot_simulate(x_sol, u_sol, [{'x':[0]},{'x':[2,3]},{'u':[0]}], 5)
Ejemplo n.º 7
0
# -*- coding: utf-8 -*-
"""
Created on Wed Nov 02 18:57:40 2016

@author: marco
"""
from __future__ import print_function

from manual_tests.models.twotanks import TwoTanks, StabilizationTwoTanks
from yaocptool.methods import IndirectMethod, AugmentedLagrangian, DirectMethod
import time

model = TwoTanks()

problem = StabilizationTwoTanks(model)

solution_method = DirectMethod(
    problem,
    # discretization_scheme='collocation',
    degree=3,
    finite_elements=20)

solution = solution_method.solve()
solution.plot([{'x': 'all'}, {'y': 'all'}, {'u': 'all'}])
Ejemplo n.º 8
0
from tests.models import create_2x2_mimo
from yaocptool.methods import DirectMethod

nlpsol_opts = {"ipopt.print_level": 0, "print_time": False}

# test_direct_collocation_polynomial_control
model, problem = create_2x2_mimo()
solution_method = DirectMethod(
    problem,
    degree=3,
    degree_control=3,
    finite_elements=20,
    discretization_scheme="collocation",
    nlpsol_opts=nlpsol_opts,
)
result = solution_method.solve()
print(result.objective_opt_problem)
Ejemplo n.º 9
0
    result2 = solution_method2.solve(p=[1], x_0=[2, 3, 0, 0])
    figs = result2.plot([{
        'x': [0, 1]
    }, {
        'u': 'all'
    }, {
        'y': [2, 3]
    }],
                        figures=figs,
                        show=True)

if DIRECT:
    model = MIMO2x2DAE('direct')
    problem = StabilizationMIMO2x2WithInequality(model, t_f=10)
    solution_method2 = DirectMethod(
        problem,
        degree=degree,
        degree_control=degree_control,
        finite_elements=finite_elements,
        discretization_scheme=discretization_scheme)
    result2 = solution_method2.solve(p=[1], x_0=[2, 3, 0])
    figs = result2.plot(
        [  # {'x': [0]},
            {
                'x': [0, 1]
            }, {
                'u': [0]
            }
        ],
        figures=figs)
Ejemplo n.º 10
0
# Apply PCE to transform the Stochastic OCP into a 'standard' OCP
pce_converter = PCEConverter(problem)

# It is possible to include some expressions if we want to calculate the statistics (mean and variance) with PCE
# pce_converter.stochastic_variables.append(a * sqrt(2 * g * h_1))
# pce_converter.stochastic_variables.append(h_1)

# Transform the Stochastic OCP into a OCP
pce_problem = pce_converter.convert_socp_to_ocp_with_pce()

######################
#  Solution Method   #
######################
# Initialize a DirectMethod to solve the OCP using collocation
solution_method = DirectMethod(pce_problem,
                               finite_elements=20,
                               discretization_scheme="collocation")

# Solve the problem and get the result
result = solution_method.solve(p=[0.071e-2] + [0] * 6)

# Make one plot with the element with h_0 and h_1 for every sample, notice that it has an additional state that is the
# cost at each sample.
result.plot([
    {
        "x": range(0, 3 * pce_converter.n_samples, 3)
    },
    {
        "x": range(1, 3 * pce_converter.n_samples, 3)
    },
    {