Ejemplo n.º 1
0
def solve_sat(expression):
    if len(expression) == 0: return []  # Trivial case.  Otherwise count vars.
    numvars = max([max([abs(v) for v in clause]) for clause in expression])
    lp = yaposib.Problem(
        yaposib.available_solvers()[0])  # Construct an empty linear program.
    for i in range(2 * numvars):
        col = lp.cols.add(yaposib.vec(
            []))  # As many columns as there are literals.
        col.lowerbound = 0.0  # Literal must be between false and true.
        col.upperbound = 1.0

    def lit2col(lit):  # Function to compute column index.
        return [2 * (-lit) - 1, 2 * lit - 2][lit > 0]

    for i in xrange(1, numvars + 1):  # Ensure "oppositeness" of literals.
        row = lp.rows.add(yaposib.vec([(lit2col(i), 1.0), (lit2col(-i), 1.0)]))
        row.lowerbound = row.upperbound = 1.0  # Must sum to exactly 1.
    for clause in expression:  # Ensure "trueness" of each clause.
        row = lp.rows.add(yaposib.vec([(lit2col(lit), 1.0) for lit in clause]))
        row.lowerbound = 1.0  # At least one literal must be true.
    lp.solve()  # Try to solve the relaxed problem.
    if lp.status != 'optimal':
        return None  # If no relaxed solution, no exact sol.

    for col in lp.cols:
        col.integer = True
    lp.solveMIP()  # Try to solve this integer problem.
    if lp.status != 'optimal': return None
    return [lp.cols[i].solution > 0.99 for i in range(0, len(lp.cols), 2)]
Ejemplo n.º 2
0
        def __init__(
            self,
            mip=True,
            msg=True,
            timeLimit=None,
            epgap=None,
            solverName=None,
            **solverParams
        ):
            """
            Initializes the yaposib solver.

            @param mip:          if False the solver will solve a MIP as
                                 an LP
            @param msg:          displays information from the solver to
                                 stdout
            @param timeLimit:    not supported
            @param epgap:        not supported
            @param solverParams: not supported
            """
            LpSolver.__init__(self, mip, msg)
            if solverName:
                self.solverName = solverName
            else:
                self.solverName = yaposib.available_solvers()[0]
Ejemplo n.º 3
0
def halfint_correlation_clustering(similarity):
    """Wacky MIP-based half-int constrained correlation clustering."""
    lp = yaposib.Problem(yaposib.available_solvers()[0])                   # Define the linear program.
    items = len(similarity)                  # Get the number of items.
    lp.obj.maximize = True                   # Set as maximization.
    for i in range((items*(items-1))/2):
        lp.cols.add(yaposib.vec([]))         # Each item pair has a var.
    for j in xrange(items):
        for i in xrange(j):
            index = pair2index(i, j)         # Get the index for this pair.
            lp.cols[index].lowerbound = 0    # Each variable in range 0 to 1.
            lp.cols[index].upperbound = 2    # Each variable in range 0 to 1.
            lp.cols[index].integer = True    # This should be integral.
            lp.obj[index]=similarity[j][i]/2 # If 1, this much added to obj.
    for k in xrange(items):                  # For all triples of items, we
        for j in xrange(k):                  # want to add in constraints to
            jk = pair2index(j,k)             # enforce respect for the
            for i in xrange(j):              # triangle inequality.
                ij, ik = pair2index(i,j), pair2index(i,k)
                # We want Xij >= Xik + Xjk - 1.
                # That is, we want 1 >= Xik + Xjk - Xij.
                # Add constraints to enforce this!
                lp.rows.add(yaposib.vec([(ij, 1), (ik, 1), (jk,-1)]))
                lp.rows.add(yaposib.vec([(ij, 1), (ik,-1), (jk, 1)]))
                lp.rows.add(yaposib.vec([(ij,-1), (ik, 1), (jk, 1)]))
    for row in lp.rows:                      # For each row.
        row.upperbound = 2                   # Each row is <= 1.
    lp.solveMIP()                            # Find the basic solution.
    labels = [[lp.cols[pair2index(i,j)].solution/2 for i in xrange(j)]
              for j in xrange(items)]
    return lp.obj.value, labels
Ejemplo n.º 4
0
def halfint_correlation_clustering(similarity):
    """Wacky MIP-based half-int constrained correlation clustering."""
    lp = yaposib.Problem(
        yaposib.available_solvers()[0])  # Define the linear program.
    items = len(similarity)  # Get the number of items.
    lp.obj.maximize = True  # Set as maximization.
    for i in range((items * (items - 1)) / 2):
        lp.cols.add(yaposib.vec([]))  # Each item pair has a var.
    for j in xrange(items):
        for i in xrange(j):
            index = pair2index(i, j)  # Get the index for this pair.
            lp.cols[index].lowerbound = 0  # Each variable in range 0 to 1.
            lp.cols[index].upperbound = 2  # Each variable in range 0 to 1.
            lp.cols[index].integer = True  # This should be integral.
            lp.obj[
                index] = similarity[j][i] / 2  # If 1, this much added to obj.
    for k in xrange(items):  # For all triples of items, we
        for j in xrange(k):  # want to add in constraints to
            jk = pair2index(j, k)  # enforce respect for the
            for i in xrange(j):  # triangle inequality.
                ij, ik = pair2index(i, j), pair2index(i, k)
                # We want Xij >= Xik + Xjk - 1.
                # That is, we want 1 >= Xik + Xjk - Xij.
                # Add constraints to enforce this!
                lp.rows.add(yaposib.vec([(ij, 1), (ik, 1), (jk, -1)]))
                lp.rows.add(yaposib.vec([(ij, 1), (ik, -1), (jk, 1)]))
                lp.rows.add(yaposib.vec([(ij, -1), (ik, 1), (jk, 1)]))
    for row in lp.rows:  # For each row.
        row.upperbound = 2  # Each row is <= 1.
    lp.solveMIP()  # Find the basic solution.
    labels = [[lp.cols[pair2index(i, j)].solution / 2 for i in xrange(j)]
              for j in xrange(items)]
    return lp.obj.value, labels
Ejemplo n.º 5
0
 def test_duals_and_slacks(self):
     for solver in yaposib.available_solvers():
         prob = duals_and_slacks(solver)
         yaposibTestCheck(prob, ["optimal"], sol=[4, -1, 6],
                 reducedcosts=[0, 12, 0], duals=[0, 1, 8],
                 #slacks=[2, 0, 0]
                 )
Ejemplo n.º 6
0
def hamiltonian(edges):
    node2colnums = {} # Maps node to col indices of incident edges.
    for colnum, edge in enumerate(edges):
        n1, n2 = edge
        node2colnums.setdefault(n1, []).append(colnum)
        node2colnums.setdefault(n2, []).append(colnum)

    print node2colnums

    lp = yaposib.Problem(yaposib.available_solvers()[0])              # A new empty linear program
    for i in range(len(edges)):
        col = lp.cols.add(yaposib.vec([]))  # A struct var for each edge
        col.integer = True                  # Make integer, not continuous
        col.lowerbound = 0                  # Make binary, not continuous
        col.upperbound = 1                  # Make binary, not continuous

    # For each node, select at least 1 and at most 2 incident edges.
    for edge_column_nums in node2colnums.values():
        row = lp.rows.add(yaposib.vec([(cn, 1.0) for cn in edge_column_nums]))
        row.lowerbound = 1
        row.upperbound = 2

    # We should select exactly (number of nodes - 1) edges total
    row = lp.rows.add(yaposib.vec([(cn, 1.0) for cn in
        range(len(lp.cols))]))
    row.lowerbound = row.upperbound = len(node2colnums)-1

    lp.solve()
    if lp.status != 'optimal': return None  # If no relaxed sol., no exact sol.

    # Return the edges whose associated struct var has value 1.
    return [edge for edge, col in zip(edges, lp.cols) if col.solution > 0.99]
Ejemplo n.º 7
0
 def test_duals_and_slacks(self):
     for solver in yaposib.available_solvers():
         prob = duals_and_slacks(solver)
         yaposibTestCheck(
             prob,
             ["optimal"],
             sol=[4, -1, 6],
             reducedcosts=[0, 12, 0],
             duals=[0, 1, 8],
             #slacks=[2, 0, 0]
         )
Ejemplo n.º 8
0
def maxflow(capgraph, s, t):
    node2rnum = {}  # Map non-source/sink nodes to row num.
    for nfrom, nto, cap in capgraph:
        if nfrom != s and nfrom != t:
            node2rnum.setdefault(nfrom, len(node2rnum))
        if nto != s and nto != t:
            node2rnum.setdefault(nto, len(node2rnum))

    lp = yaposib.Problem(yaposib.available_solvers()[0])  # Empty LP instance.
    for i in range(len(capgraph)):
        lp.cols.add(yaposib.vec([]))  # As many columns cap-graph edges.

    mat = []  # Will hold constraint matrix entries.
    for colnum, (nfrom, nto, cap) in enumerate(capgraph):
        lp.cols[colnum].lowerbound = 0  # Flow along edge bounded by capacity.
        lp.cols[
            colnum].upperbound = cap  # Flow along edge bounded by capacity.

        if nfrom == s:
            lp.obj[colnum] = 1.0  # Flow from source increases flow value
        elif nto == s:
            lp.obj[colnum] = -1.0  # Flow to source decreases flow value

        if nfrom in node2rnum:  # Flow from node decreases its net flow
            mat.append((node2rnum[nfrom], colnum, -1.0))
        if nto in node2rnum:  # Flow to node increases its net flow
            mat.append((node2rnum[nto], colnum, 1.0))

    lp.obj.maximize = True  # Want source s max flow maximized.

    for row_nr in range(len(node2rnum)):
        to_add = [(j, coef) for i, j, coef in mat if i == row_nr]
        row = lp.rows.add(yaposib.vec(to_add))
        row.lowerbound = row.upperbound = 0  # Net flow for non-source/sink is 0.

    lp.solve()  # This should work unless capgraph bad.

    return [
        (nfrom, nto, col.solution)  # Return edges with assigned flow.
        for col, (nfrom, nto, cap) in zip(lp.cols, capgraph)
    ]
Ejemplo n.º 9
0
 def test_HotStart(self):
     """
     Tests the hotstart feature.
     1) solve, get a hotstart
     2) wipe and resolve, knowing a hotstart now exists
     3) wipe and unmark the hotstart, resolve again
     """
     for solver in yaposib.available_solvers():
         prob = continuous(solver)
         prob.solve()
         yaposibTestCheck(prob, ["optimal"], sol = [4.0, -1.0, 6.0, 0.0])
         wipe_solution(prob)
         prob.markHotStart()
         #time = -clock()
         prob.solve()
         #time += clock()
         yaposibTestCheck(prob, ["optimal"], sol = [4.0, -1.0, 6.0, 0.0])
         wipe_solution(prob)
         prob.unmarkHotStart()
         prob.solve()
         yaposibTestCheck(prob, ["optimal"], sol = [4.0, -1.0, 6.0, 0.0])
Ejemplo n.º 10
0
 def test_HotStart(self):
     """
     Tests the hotstart feature.
     1) solve, get a hotstart
     2) wipe and resolve, knowing a hotstart now exists
     3) wipe and unmark the hotstart, resolve again
     """
     for solver in yaposib.available_solvers():
         prob = continuous(solver)
         prob.solve()
         yaposibTestCheck(prob, ["optimal"], sol=[4.0, -1.0, 6.0, 0.0])
         wipe_solution(prob)
         prob.markHotStart()
         #time = -clock()
         prob.solve()
         #time += clock()
         yaposibTestCheck(prob, ["optimal"], sol=[4.0, -1.0, 6.0, 0.0])
         wipe_solution(prob)
         prob.unmarkHotStart()
         prob.solve()
         yaposibTestCheck(prob, ["optimal"], sol=[4.0, -1.0, 6.0, 0.0])
Ejemplo n.º 11
0
 def test_writeLp(self):
     lpfile = ["\Problem name: ",
     "",
     "Minimize",
     "OBJROW: x + 4 y + 9 z",
     "Subject To",
     "c1:  x + y <= 5",
     "c2:  x + z >= 10",
     "c3:  - y + z = 7",
     "c4:  w >= 0",
     "Bounds",
     " 0 <= x <= 4",
     " -1 <= y <= 1",
     "End",]
     for solver in yaposib.available_solvers():
         prob = continuous(solver)
         prob.writeLp("debug")
         with open("debug.lp", "r") as f:
             for line, ref in zip(f, lpfile):
                 if line.strip() != ref.strip():
                     error_msg = "\t%s != %s" % (line.strip(), ref.strip())
                     raise yaposib.YaposibError(error_msg)
Ejemplo n.º 12
0
def maxflow(capgraph, s, t):
    node2rnum = {}                      # Map non-source/sink nodes to row num.
    for nfrom, nto, cap in capgraph:
        if nfrom!=s and nfrom!=t:
            node2rnum.setdefault(nfrom, len(node2rnum))
        if nto!=s and nto!=t:
            node2rnum.setdefault(nto, len(node2rnum))

    lp = yaposib.Problem(yaposib.available_solvers()[0])         # Empty LP instance.
    for i in range(len(capgraph)):
        lp.cols.add(yaposib.vec([])) # As many columns cap-graph edges.

    mat = []                            # Will hold constraint matrix entries.
    for colnum, (nfrom, nto, cap) in enumerate(capgraph):
        lp.cols[colnum].lowerbound = 0  # Flow along edge bounded by capacity.
        lp.cols[colnum].upperbound = cap # Flow along edge bounded by capacity.

        if nfrom == s:
            lp.obj[colnum] =  1.0       # Flow from source increases flow value
        elif nto == s:
            lp.obj[colnum] = -1.0       # Flow to source decreases flow value

        if nfrom in node2rnum:          # Flow from node decreases its net flow
            mat.append((node2rnum[nfrom], colnum, -1.0))
        if nto in node2rnum:            # Flow to node increases its net flow
            mat.append((node2rnum[nto], colnum, 1.0))

    lp.obj.maximize = True              # Want source s max flow maximized.

    for row_nr in range(len(node2rnum)):
        to_add = [(j, coef) for i, j, coef in mat if i == row_nr]
        row = lp.rows.add(yaposib.vec(to_add))
        row.lowerbound = row.upperbound = 0 # Net flow for non-source/sink is 0.

    lp.solve()                        # This should work unless capgraph bad.

    return [(nfrom, nto, col.solution)     # Return edges with assigned flow.
            for col, (nfrom, nto, cap) in zip(lp.cols, capgraph)]
Ejemplo n.º 13
0
def tsp(edges):
    node2colnums = {} # Maps node to col indices of incident edges.
    for colnum, edge in enumerate(edges):
        n1, n2, cost = edge
        node2colnums.setdefault(n1, []).append(colnum)
        node2colnums.setdefault(n2, []).append(colnum)

    lp = yaposib.Problem(yaposib.available_solvers()[0])              # A new empty linear program
    for i in range(len(edges)):
        col = lp.cols.add(yaposib.vec([]))  # A struct var for each edge
        col.integer = True                  # Make binary, not continuous
        col.lowerbound = 0              # Either edge selected (1) or not (0)
        col.upperbound = 1              # Either edge selected (1) or not (0)

    lp.rows.add(len(node2colnums)+1)    # Constraint for each node

    lp.obj[:] = [e[-1] for e in edges]  # Try to minimize the total costs.
    lp.obj.maximize = False

    # For each node, select two edges, i.e.., an arrival and a departure.
    for edge_column_nums in node2colnums.values():
        row = lp.rows.add(yaposib.vec([(cn, 1.0) for cn in edge_column_nums]))
        row.lowerbound = row.upperbound = 2

    # We should select exactly (number of nodes) edges total
    row = lp.rows.add(yaposib.vec([(cn, 1.0) for cn in
        range(len(lp.cols))]))
    row.lowerbound = row.upperbound = len(node2colnums)

    lp.solve()
    if lp.status != 'optimal': return None  # If no relaxed sol., no exact sol.

    lp.solveMIP()
    if lp.status != 'optimal': return None  # Count not find integer solution!

    # Return the edges whose associated struct var has value 1.
    return [edge for edge, col in zip(edges, lp.cols) if col.value > 0.99]
Ejemplo n.º 14
0
 def test_writeLp(self):
     lpfile = [
         "\Problem name: ",
         "",
         "Minimize",
         "OBJROW: x + 4 y + 9 z",
         "Subject To",
         "c1:  x + y <= 5",
         "c2:  x + z >= 10",
         "c3:  - y + z = 7",
         "c4:  w >= 0",
         "Bounds",
         " 0 <= x <= 4",
         " -1 <= y <= 1",
         "End",
     ]
     for solver in yaposib.available_solvers():
         prob = continuous(solver)
         prob.writeLp("debug")
         with open("debug.lp", "r") as f:
             for line, ref in zip(f, lpfile):
                 if line.strip() != ref.strip():
                     error_msg = "\t%s != %s" % (line.strip(), ref.strip())
                     raise yaposib.YaposibError(error_msg)
Ejemplo n.º 15
0
def solve_sat(expression):
    if len(expression)==0: return [] # Trivial case.  Otherwise count vars.
    numvars = max([max([abs(v) for v in clause]) for clause in expression])
    lp = yaposib.Problem(yaposib.available_solvers()[0])           # Construct an empty linear program.
    for i in range(2*numvars):
        col = lp.cols.add(yaposib.vec([])) # As many columns as there are literals.
        col.lowerbound = 0.0         # Literal must be between false and true.
        col.upperbound = 1.0
    def lit2col(lit):                # Function to compute column index.
        return [2*(-lit)-1,2*lit-2][lit>0]
    for i in xrange(1, numvars+1):   # Ensure "oppositeness" of literals.
        row = lp.rows.add(yaposib.vec([(lit2col(i), 1.0), (lit2col(-i), 1.0)]))
        row.lowerbound = row.upperbound = 1.0 # Must sum to exactly 1.
    for clause in expression:        # Ensure "trueness" of each clause.
        row = lp.rows.add(yaposib.vec([(lit2col(lit), 1.0) for lit in clause]))
        row.lowerbound =  1.0        # At least one literal must be true.
    lp.solve()                       # Try to solve the relaxed problem.
    if lp.status!='optimal': return None # If no relaxed solution, no exact sol.

    for col in lp.cols:
        col.integer = True
    lp.solveMIP()          # Try to solve this integer problem.
    if lp.status != 'optimal': return None
    return [lp.cols[i].solution > 0.99 for i in range(0, len(lp.cols), 2) ]
Ejemplo n.º 16
0
 def test_isProvenOptimal(self):
     for solver in yaposib.available_solvers():
         prob = continuous(solver)
         yaposibTestCheck(prob, ["optimal"], sol = [4.0, -1.0, 6.0, 0.0])
         if (not prob.isProvenOptimal):
             raise yaposib.YaposibError
Ejemplo n.º 17
0
 def test_continuous_maximisation(self):
     for solver in yaposib.available_solvers():
         prob = continuous_maximisation(solver)
         yaposibTestCheck(prob, ["optimal"], sol=[4.0, 1.0, 8.0, 0.0])
Ejemplo n.º 18
0
 def test_isProvenDualInfeasible(self):
     for solver in yaposib.available_solvers():
         prob = unbounded(solver)
         yaposibTestCheck(prob, ["infeasible"])
         if (not prob.isProvenDualInfeasible):
             raise yaposib.YaposibError
Ejemplo n.º 19
0
 def test_mip(self):
     for solver in yaposib.available_solvers():
         prob = mip(solver)
         yaposibTestCheck(prob, ["optimal"], [3.0, -0.5, 7.0],
                 solve_as_MIP = True)
Ejemplo n.º 20
0
 def test_feasability_only(self):
     for solver in yaposib.available_solvers():
         prob = feasability_only(solver)
         yaposibTestCheck(prob, ["optimal"])
Ejemplo n.º 21
0
 def test_isDualObjectiveLimitReached(self):
     for solver in yaposib.available_solvers():
         prob = infeasible(solver)
         yaposibTestCheck(prob, ["infeasible", "limitreached"])
         if (not prob.isDualObjectiveLimitReached):
             raise yaposib.YaposibError
Ejemplo n.º 22
0
 def test_continuous_maximisation(self):
     for solver in yaposib.available_solvers():
         prob = continuous_maximisation(solver)
         yaposibTestCheck(prob, ["optimal"], sol = [4.0, 1.0, 8.0, 0.0])
Ejemplo n.º 23
0
 def test_relaxed_mip(self):
     for solver in yaposib.available_solvers():
         prob = mip(solver)
         prob.obj.name = "relaxed_mip"
         yaposibTestCheck(prob, ["optimal"], [3.5, -1, 6.5])
Ejemplo n.º 24
0
 def test_isProvenOptimal(self):
     for solver in yaposib.available_solvers():
         prob = continuous(solver)
         yaposibTestCheck(prob, ["optimal"], sol=[4.0, -1.0, 6.0, 0.0])
         if (not prob.isProvenOptimal):
             raise yaposib.YaposibError
Ejemplo n.º 25
0
 def test_isProvenPrimalInfeasible(self):
     for solver in yaposib.available_solvers():
         prob = infeasible(solver)
         yaposibTestCheck(prob, ["infeasible", "limitreached"])
         if (not prob.isProvenPrimalInfeasible):
             raise yaposib.YaposibError
Ejemplo n.º 26
0
 def test_available_solvers(self):
     self.failIfEqual(yaposib.available_solvers(), [])
Ejemplo n.º 27
0
 def test_feasability_only(self):
     for solver in yaposib.available_solvers():
         prob = feasability_only(solver)
         yaposibTestCheck(prob, ["optimal"])
Ejemplo n.º 28
0
    """
    builds the following problem

    0  <= x <= 4
    -1 <= y <= 1
    0  <= z
    0  <= w

    minimize obj = x + 4*y + 9*z
    such that:
    c1: x+y <= 5
    c2: x+z >= 10
    c3: -y+z == 7
    c4: w >= 0
    """
    prob = yaposib.Problem(yaposib.available_solvers()[0])

    prob.obj.name = "MyProblem"
    prob.obj.maximize = False
    # names
    for i in range(4):
        prob.cols.add(yaposib.vec([]))
    prob.cols[0].name = "x"
    prob.cols[1].name = "y"
    prob.cols[2].name = "z"
    prob.cols[3].name = "w"
    # lowerbounds
    for col in prob.cols:
        col.lowerbound = 0
    prob.cols[1].lowerbound = -1
    # upperbounds
Ejemplo n.º 29
0
    """
    builds the following problem

    0  <= x <= 4
    -1 <= y <= 1
    0  <= z
    0  <= w

    minimize obj = x + 4*y + 9*z
    such that:
    c1: x+y <= 5
    c2: x+z >= 10
    c3: -y+z == 7
    c4: w >= 0
    """
    prob = yaposib.Problem(yaposib.available_solvers()[0])

    prob.obj.name = "MyProblem"
    prob.obj.maximize = False
    # names
    for i in range(4):
        prob.cols.add(yaposib.vec([]))
    prob.cols[0].name = "x"
    prob.cols[1].name = "y"
    prob.cols[2].name = "z"
    prob.cols[3].name = "w"
    # lowerbounds
    for col in prob.cols:
        col.lowerbound = 0
    prob.cols[1].lowerbound = -1
    # upperbounds
Ejemplo n.º 30
0
 def test_isProvenPrimalInfeasible(self):
     for solver in yaposib.available_solvers():
         prob = infeasible(solver)
         yaposibTestCheck(prob, ["infeasible", "limitreached"])
         if (not prob.isProvenPrimalInfeasible):
             raise yaposib.YaposibError
Ejemplo n.º 31
0
 def test_isAbandoned(self):
     for solver in yaposib.available_solvers():
         prob = continuous(solver)
         if (not prob.isAbandoned):
             raise yaposib.YaposibError
Ejemplo n.º 32
0
 def test_isProvenDualInfeasible(self):
     for solver in yaposib.available_solvers():
         prob = unbounded(solver)
         yaposibTestCheck(prob, ["infeasible"])
         if (not prob.isProvenDualInfeasible):
             raise yaposib.YaposibError
Ejemplo n.º 33
0
 def test_continuous(self):
     for solver in yaposib.available_solvers():
         prob = continuous(solver)
         yaposibTestCheck(prob, ["optimal"], sol=[4.0, -1.0, 6.0, 0.0])
Ejemplo n.º 34
0
 def test_continuous(self):
     for solver in yaposib.available_solvers():
         prob = continuous(solver)
         yaposibTestCheck(prob, ["optimal"], sol = [4.0, -1.0, 6.0, 0.0])
Ejemplo n.º 35
0
 def test_available_solvers(self):
     self.failIfEqual(yaposib.available_solvers(), [])
Ejemplo n.º 36
0
 def test_unbounded(self):
     for solver in yaposib.available_solvers():
         prob = unbounded(solver)
         yaposibTestCheck(prob, ["infeasible"])
Ejemplo n.º 37
0
 def test_mip(self):
     for solver in yaposib.available_solvers():
         prob = mip(solver)
         yaposibTestCheck(prob, ["optimal"], [3.0, -0.5, 7.0],
                          solve_as_MIP=True)
Ejemplo n.º 38
0
 def test_relaxed_mip(self):
     for solver in yaposib.available_solvers():
         prob = mip(solver)
         prob.obj.name = "relaxed_mip"
         yaposibTestCheck(prob, ["optimal"], [3.5, -1, 6.5])
Ejemplo n.º 39
0
 def test_unbounded(self):
     for solver in yaposib.available_solvers():
         prob = unbounded(solver)
         yaposibTestCheck(prob, ["infeasible"])
Ejemplo n.º 40
0
 def test_integer_infeasible(self):
     for solver in yaposib.available_solvers():
         prob = integer_infeasible(solver)
         yaposibTestCheck(prob, ["infeasible", "limitreached"], solve_as_MIP = True)
Ejemplo n.º 41
0
 def test_isAbandoned(self):
     for solver in yaposib.available_solvers():
         prob = continuous(solver)
         if (not prob.isAbandoned):
             raise yaposib.YaposibError
Ejemplo n.º 42
0
 def test_isDualObjectiveLimitReached(self):
     for solver in yaposib.available_solvers():
         prob = infeasible(solver)
         yaposibTestCheck(prob, ["infeasible", "limitreached"])
         if (not prob.isDualObjectiveLimitReached):
             raise yaposib.YaposibError
Ejemplo n.º 43
0
 def test_integer_infeasible(self):
     for solver in yaposib.available_solvers():
         prob = integer_infeasible(solver)
         yaposibTestCheck(prob, ["infeasible", "limitreached"],
                          solve_as_MIP=True)