Ejemplo n.º 1
0
y = np.concatenate((binding_sites_labels, other_labels))

# %%
visualizer = ClassBalance(labels=class_names)
visualizer.fit(y)
visualizer.poof()

# %%
visualizer = ParallelCoordinates()
visualizer.fit_transform(X, y)
visualizer.poof()

# %%
visualizer = Rank1D()
visualizer.fit(X, y)
visualizer.transform(X)
visualizer.poof()

# %%
visualizer = Rank2D()
visualizer.fit_transform(X)
visualizer.poof()

# %%
visualizer = FeatureCorrelation()
visualizer.fit(X, y)
visualizer.poof()

# %%
visualizer = FeatureCorrelation(method='mutual_info-classification')
visualizer.fit(X, y)
Ejemplo n.º 2
0
X["timerecurrence"].describe()

#%%
# for column in X.columns[2:16]:
#     plt.scatter(X[column], y)
#     plt.xlabel(column)
#     plt.show()

#%%
from yellowbrick.features.radviz import RadViz 

features = X.columns[:13]
visualizer = RadViz(classes=class_labels, features=features)

visualizer.fit(X[features], y)
visualizer.transform(df[features])
visualizer.show()

#%%
from yellowbrick.target import FeatureCorrelation

visualizer = FeatureCorrelation(labels=features)

visualizer.fit(X[features], y)        # Fit the data to the visualizer
visualizer.show()           # Finalize and render the figure

#%%
from yellowbrick.features import JointPlotVisualizer

visualizer = JointPlotVisualizer()