Ejemplo n.º 1
0
def test_plot_knee():
    """Test that plotting is functional"""
    with np.errstate(divide="ignore"):
        x = np.linspace(0.0, 1, 10)
        y = np.true_divide(-1, x + 0.1) + 5
    kl = KneeLocator(x, y, S=1.0, curve_nature="concave")
    num_figures_before = plt.gcf().number
    kl.plot_knee()
    num_figures_after = plt.gcf().number
    assert num_figures_before < num_figures_after
Ejemplo n.º 2
0
def test_convex_decreasing():
    """Tests that a correct knee point is detected in
    curve having convex and decreasing nature."""
    kn = KneeLocator(x,
                     y_convex_dec,
                     curve_nature="convex",
                     curve_direction="decreasing")
    assert kn.knee == 2
Ejemplo n.º 3
0
def test_concave_increasing_truncated():
    """Tests that a correct knee point is detected in
    curve having truncated concave increasing nature"""
    kn = KneeLocator(
        x[:-3] / 10,
        y_concave_inc[:-3] / 10,
        curve_nature="concave",
        curve_direction="increasing",
    )
    assert kn.knee == 0.2
Ejemplo n.º 4
0
def test_properties():
    """Tests that elbow and knee can be used interchangeably."""
    kn = KneeLocator(x,
                     y_concave_inc,
                     curve_nature="concave",
                     curve_direction="increasing")
    assert kn.knee == kn.elbow
    assert kn.norm_knee == kn.norm_elbow
    # pytest compares all elements in each list.
    assert kn.all_knees == kn.all_elbows
    assert kn.all_norm_knees == kn.all_norm_elbows
Ejemplo n.º 5
0
def test_gamma_online_offline(online, expected):
    """Tests online and offline knee detection.
    Notable that a large number of samples are highly sensitive to S parameter
    """
    np.random.seed(23)
    n = 1000
    x = range(1, n + 1)
    y = sorted(np.random.gamma(0.5, 1.0, n), reverse=True)
    kl = KneeLocator(x,
                     y,
                     curve_nature="convex",
                     curve_direction="decreasing",
                     online=online)
    assert kl.knee == expected
Ejemplo n.º 6
0
def test_y():
    """Test the y value"""
    with np.errstate(divide="ignore"):
        x = np.linspace(0.0, 1, 10)
        y = np.true_divide(-1, x + 0.1) + 5
    kl = KneeLocator(x, y, S=1.0, curve_nature="concave")
    assert kl.knee_y == pytest.approx(1.897, 0.03)
    assert kl.all_knees_y[0] == pytest.approx(1.897, 0.03)
    assert kl.norm_knee_y == pytest.approx(0.758, 0.03)
    assert kl.all_norm_knees_y[0] == pytest.approx(0.758, 0.03)

    assert kl.elbow_y == pytest.approx(1.897, 0.03)
    assert kl.all_elbows_y[0] == pytest.approx(1.897, 0.03)
    assert kl.norm_elbow_y == pytest.approx(0.758, 0.03)
    assert kl.all_norm_elbows_y[0] == pytest.approx(0.758, 0.03)
Ejemplo n.º 7
0
def test_x_equals_y():
    """Test that a runtime warning is raised when no maxima are found"""
    x = range(10)
    y = [1] * len(x)
    with pytest.warns(RuntimeWarning):
        KneeLocator(x, y)