def test_detect_submodule_in_deployment(self): yh = Yhat("greg", "test", "http://api.yhathq.com/") _, bundle = yh.deploy("TestModel", TestModel, globals(), sure=True, dry_run=True) self.assertEqual(len(bundle['modules']), 8)
import os from yhat import Yhat, YhatModel from pricing import Pricing class MarketingSearchAPI(YhatModel): REQUIREMENTS = ["pandas==0.15.2", "numpy"] def execute(self, data): result = p.predict(data) return result p = Pricing() username = os.environ["USERNAME"] apikey = os.environ["APIKEY"] endpoint = os.environ["OPS_ENDPOINT"] print "%s:%s:%s" % ( username, apikey, endpoint, ) yh = Yhat(username, apikey, endpoint) yh.deploy("RelayRidesPricing", MarketingSearchAPI, globals(), sure=True)
from yhat import YhatModel, Yhat import nltk bot = nltk.chat.eliza.eliza_chatbot # bot = nltk.chat.iesha.iesha_chatbot class ChatBot(YhatModel): def execute(self, data): text = data['text'] reply = bot.respond(text) return {"reply": reply} print ChatBot().execute({"text": "I'm feeling sad."}) yh = Yhat("greg", "foo", "http://cloud.yhathq.com/") print yh.deploy("ChatBot", ChatBot, globals())
import base64 def transform(self, data): image_string = data["image_string"] STANDARD_SIZE = (50, 50) f = StringIO(base64.decodestring(image_string)) img = Image.open(f) img = img.getdata() img = img.resize(STANDARD_SIZE) img = map(list, img) img = np.array(img) s = img.shape[0] * img.shape[1] img_wide = img.reshape(1, s) return img_wide[0] def predict(self, img): x = self.pca.transform([img]) x = self.std_scaler.transform(x) results = {"label": self.clf.predict(x)[0]} probs = {"prob_" + str(i) : prob for i, prob in enumerate(self.clf.predict_proba(x)[0])} results['probs'] = probs return results digit_model = DigitModel(clf=clf, std_scaler=std_scaler, pca=pca) yh = Yhat("YOUR USERNAME", "YOUR APIKEY", "http://cloud.yhathq.com/") yh.deploy("digitRecognizer", digit_model)
get_sims(["Sierra Nevada Pale Ale", "120 Minute IPA", "Coors Light"]) # Index([u'Samuel Adams Boston Lager', u'Sierra Nevada Celebration Ale', u'90 Minute IPA', u'Arrogant Bastard Ale', u'Stone IPA (India Pale Ale)', u'60 Minute IPA', u'HopDevil Ale', u'Stone Ruination IPA', u'Sierra Nevada Bigfoot Barleywine Style Ale', u'Storm King Stout', u'Samuel Adams Winter Lager', u'Samuel Adams Summer Ale', u'Prima Pils', u'Anchor Steam Beer', u'Old Rasputin Russian Imperial Stout', u'Samuel Adams Octoberfest', ...], dtype='object') from yhat import Yhat, YhatModel, preprocess class BeerRecommender(YhatModel): @preprocess(in_type=dict, out_type=dict) def execute(self, data): beers = data.get("beers") suggested_beers = get_sims(beers) result = [] for beer in suggested_beers: result.append({"beer": beer}) return result BeerRecommender().execute({ "beers": ["Sierra Nevada Pale Ale", "120 Minute IPA", "Stone Ruination IPA"] }) yh = Yhat("USERNAME", "APIKEY", "http://cloud.yhathq.com") yh.deploy("BeerRecommender", BeerRecommender, globals()) yh.predict("BeerRecommender", { "beers": ["Sierra Nevada Pale Ale", "120 Minute IPA", "Stone Ruination IPA"] })
# create and train a classifier nbayes = MultinomialNB(fit_prior=False) nbayes.fit(train_twitter_tfidf, train.liked_content.tolist()) # prep the test data, then create a confusion matrix to examine the results test_twitter_tfidf = vec.transform(test.text) preds = nbayes.predict(test_twitter_tfidf) print pd.crosstab(test.liked_content, preds) from yhat import Yhat, YhatModel, preprocess class TwitterRanker(YhatModel): @preprocess(in_type=dict, out_type=dict) def execute(self, data): tweet = data['tweet_content'] data = vec.transform([tweet]) pred = nbayes.predict(data) prob = nbayes.predict_proba(data) prob = { "ham": round(prob[0][0], 4), "spam": 1 - round(prob[0][0], 4) } return {"pred": pred[0], "prob": prob} yh = Yhat("YOUR_USERNAME", "YOUR_APIKEY", "http://cloud.yhathq.com/") yh.deploy("twitterRanker", TwitterRanker, globals())
def execute(self, data): P = matrix(data['risk_aversion'] * returns_cov.as_matrix()) q = matrix(-exp_returns['mean'].as_matrix()) G = matrix(0.0, (len(q), len(q))) G[::len(q) + 1] = -1.0 h = matrix(0.0, (len(q), 1)) A = matrix(1.0, (1, len(q))) b = matrix(1.0) solution = solvers.qp(P, q, G, h, A, b) expected_return = exp_returns['mean'].dot(solution['x'])[0] variance = sum(solution['x'] * returns_cov.as_matrix().dot(solution['x']))[0] investments = {} for i, amount in enumerate(solution['x']): # Ignore values that appear to have converged to 0. if amount > 10e-5: investments[countries[i]] = amount * 100 return { 'risk_aversion': data['risk_aversion'], 'investments': investments, 'expected_return': expected_return, 'variance': variance } yh = Yhat('USERNAME', 'APIKEY', 'http://cloud.yhathq.com/') yh.deploy('CurrencyPortfolio', CurrencyPortfolio, globals())
import os from yhat import Yhat, YhatModel, preprocess class HelloWorld(YhatModel): version = os.environ["MODEL_VERSION"] @preprocess(in_type=dict, out_type=dict) def execute(self, data): me = data['name'] greeting = "Hello %s!" % me print os.environ["MODEL_VERSION"] return { "greeting": greeting } username = os.environ["USERNAME"] apikey = os.environ["APIKEY"] endpoint = os.environ["OPS_ENDPOINT"] print "%s:%s:%s" % (username, apikey, endpoint,) yh = Yhat( username, apikey, endpoint ) yh.deploy("HelloWorldVer", HelloWorld, globals(), sure=True)
# 1 4.9 3.0 1.4 # 2 4.7 3.2 1.3 y = pd.DataFrame(iris.data[:, 3:4], columns=iris.feature_names[3:4]) # petal width (cm) # 0 0.2 # 1 0.2 # 2 0.2 regr = linear_model.LinearRegression() regr.fit(X, y) class LinReg(YhatModel): @preprocess(in_type=pd.DataFrame, out_type=pd.DataFrame) def execute(self, data): prediction = regr.predict(pd.DataFrame(data)) return prediction username = os.environ["USERNAME"] apikey = os.environ["APIKEY"] endpoint = os.environ["OPS_ENDPOINT"] print "%s:%s:%s" % ( username, apikey, endpoint, ) yh = Yhat(username, apikey, endpoint) yh.deploy("LinearRegression", LinReg, globals(), sure=True)
from yhat import Yhat, YhatModel , preprocess x = range(10) class HelloWorld(YhatModel): @preprocess(in_type=dict, out_type=dict) def execute(self, data): print x[:10] me = data['name'] greeting = "Hello " + str(me) + "!" return { "greeting": greeting, "x": x} # yh = Yhat("greg", "fCVZiLJhS95cnxOrsp5e2VSkk0GfypZqeRCntTD1nHA", "http://cloud.yhathq.com/") yh = Yhat("greg", "9207b9a2dd9d48848b139b729d4354bc", "http://localhost:8080/") yh.deploy("NewZippedModel", HelloWorld, globals())
import os from yhat import Yhat, YhatModel, preprocess class HelloWorld(YhatModel): @preprocess(in_type=dict, out_type=dict) def execute(self, data): me = data['name'] greeting = "Hello %s!" % me return {"greeting": greeting} username = os.environ["USERNAME"] apikey = os.environ["APIKEY"] endpoint = os.environ["OPS_ENDPOINT"] print "%s:%s:%s" % ( username, apikey, endpoint, ) yh = Yhat(username, apikey, endpoint) yh.deploy("IndentedModel", HelloWorld, globals(), sure=True)
return (beer, weights) def predict(self, data): beer, weights = data results = [] for beer_cmp in self.beers: if beer != beer_cmp: dist = calc_distance(self.simple_distances, beer, beer_cmp, weights) results.append((beer, beer_cmp, dist)) return sorted(results, key=lambda x: x[2]) #Deploy to Yhat yh = Yhat("{USERNAME}", "{APIKEY}") br = BeerRec(simple_distances=simple_distances, beers=beers, udfs=[calc_distance]) yh.deploy("PydataBeerRec", br) #Test it Out yh.predict("PydataBeerRec", 1, { "beer": "Coors Light", "weights": [1, 1, 1, 1] }) yh.predict("PydataBeerRec", 1, { "beer": "Coors Light", "weights": [2, 1, 0, 0] })
from example_app.models.yhat_model import TestModel, Foo from yhat import Yhat import json yh = Yhat("greg", "foo", "http://api.yhat.com/") TestModel().execute(1) # _, bundle = yh.deploy("Foo", TestModel, globals(), dry_run=True) yh.deploy("Foo", TestModel, globals(), verbose=2) # print json.dumps(bundle, indent=2)
from yhat import Yhat, YhatModel , preprocess import os USERNAME = os.environ["USERNAME"] APIKEY = os.environ["APIKEY"] URL = os.environ["URL"] class HelloWorld(YhatModel): @preprocess(in_type=dict, out_type=dict) def execute(self, data): me = data['name'] greeting = "Hello " + str(me) + "!" return { "greeting": greeting } yh = Yhat(USERNAME, APIKEY, URL) yh.deploy("Gitmodel", HelloWorld, globals(),True)
def transform(self, data): image_string = data["image_string"] STANDARD_SIZE = (50, 50) f = StringIO(base64.decodestring(image_string)) img = Image.open(f) img = img.getdata() img = img.resize(STANDARD_SIZE) img = map(list, img) img = np.array(img) s = img.shape[0] * img.shape[1] img_wide = img.reshape(1, s) return img_wide[0] def predict(self, img): x = self.pca.transform([img]) x = self.std_scaler.transform(x) results = {"label": self.clf.predict(x)[0]} probs = { "prob_" + str(i): prob for i, prob in enumerate(self.clf.predict_proba(x)[0]) } results['probs'] = probs return results digit_model = DigitModel(clf=clf, std_scaler=std_scaler, pca=pca) yh = Yhat("YOUR USERNAME", "YOUR APIKEY", "http://cloud.yhathq.com/") yh.deploy("digitRecognizer", digit_model)
return p[0:n_recs] get_sims(["Sierra Nevada Pale Ale", "60 Minute IPA"]) from yhat import Yhat, YhatModel, preprocess class BeerRecommender(YhatModel): REQUIREMENTS=['numpy==1.11.3', 'pandas==0.19.2', 'scikit-learn==0.18.1'] def execute(self, data): beers = data.get("beers") n_recs = data.get("n_recs") prob = data.get("prob") unique = data.get("unique") suggested_beers = get_sims(beers, n_recs, prob, unique) result = suggested_beers.to_dict(orient='records') return result model = BeerRecommender() model.execute({'beers':["Sierra Nevada Pale Ale"],'n_recs':10}) yh = Yhat("colin", "ce796d278f4840e30e763413d8b4baa4", "http://do-sb-dev-master.x.yhat.com/") print yh.deploy("BeerRecommender", BeerRecommender, globals(), autodetect=False, sure=True) # print yh.predict("BeerRecommender", {"beers": ["Sierra Nevada Pale Ale", # "120 Minute IPA", "Stone Ruination IPA"]})
### Actually deploying our model to Yhat from yhat import Yhat, YhatModel class ProductClassifier(YhatModel): def execute(self, data): if "texts" not in data: return {} texts = data["texts"] return make_prediction(texts) # example handling a single record example = {"texts": {"text": "Alpo dog food"}} pp.pprint(ProductClassifier().execute(example)) # example handling multiple records example = {"texts": [{"text": "Alpo dog food"}, {"text": "Diet Coke"}]} pp.pprint(ProductClassifier().execute(example)) YHAT_USERNAME = "" YHAT_APIKEY = "" try: yh = Yhat(YHAT_USERNAME, YHAT_APIKEY, "http://cloud.yhathq.com/") except: print "Please add in your YHAT_USERNAME and YHAT_APIKEY" sys.exit(1) print yh.deploy("ProductClassifier", ProductClassifier, globals())
self.hprint2('<div id="lineCanvas" style="overflow: auto; position:relative;height:300px;width:400px;"></div>') self.hprint2('<script type="text/javascript">') self.hprint2('var g = new line_graph();') for i in range(len(parcoh)): self.hprint2("g.add('%d', %f);"%(i+1, parcoh[i]*100)) self.hprint2('g.render("lineCanvas", "Paragraphs");') self.hprint2('</script>') # display text annotation/highlight met(d, is_local=is_local, num_label=max(int(good), int(bad)), label_sent=True) self.fout.write("<hr>") self.fout.write("<label><h2>Cohesion Highlighter</h2></label>") if int(good)>0: self.fout.write('<span class="bold red">Red: Cohesive </span>') if int(bad)>0: self.fout.write('<span class="yellow-background">Yellow: Not Cohesive</span>') self.hprint2('<div style="width:600px;"><p align="left">') d.print_html(self.fout, int(good), int(bad)) self.hprint2('</p></div>') # End Computing and OUtput output = self.fout.getvalue() self.fout.close() return { "html_output": output } #StickyTextYhat().run() yh = Yhat("*****@*****.**", "ff7bb725be9e4a32af286f464b316a23", "http://umsi.yhathq.com/") yh.deploy ("StickyText", StickyTextYhat, globals())
image = np.array(pilImage) resized_image = cv2.resize(image, (224, 224)).astype(np.float32) resized_image[:,:,0] -= 103.939 resized_image[:,:,1] -= 116.779 resized_image[:,:,2] -= 123.68 resized_image = resized_image.transpose((2,0,1)) resized_image = np.expand_dims(resized_image, axis=0) out = model.predict(resized_image) # pred = dict(zip(labels, model.predict_proba(im)[0])) output = [] guesses = np.array(labels)[np.argsort(out[0])].tolist() guesses.reverse() for item in guesses[:10]: output.append(item) output = ", ".join(output) guesses = ",".join(output.split(", ")[:5]) print "It's a %s" % guesses return { "guess": guesses } testdata = { "image64": open('./test-image.base64', 'rb').read() } print ImageRecognizer().execute(testdata) yh = Yhat(USERNAME, APIKEY, URL) yh.deploy("ImageRecognizer", ImageRecognizer, globals(), True)
from yhat import Yhat, YhatModel, preprocess import os USERNAME = os.environ["USERNAME"] APIKEY = os.environ["APIKEY"] URL = os.environ["URL"] class HelloWorld(YhatModel): @preprocess(in_type=dict, out_type=dict) def execute(self, data): me = data['name'] greeting = "Hello " + str(me) + "!" return {"greeting": greeting} yh = Yhat(USERNAME, APIKEY, URL) yh.deploy("Gitmodel", HelloWorld, globals(), True)
import os from yhat import Yhat, YhatModel from pricing import Pricing class MarketingSearchAPI(YhatModel): REQUIREMENTS = [ "pandas==0.15.2", "numpy" ] def execute(self, data): result = p.predict(data) return result p = Pricing() username = os.environ["USERNAME"] apikey = os.environ["APIKEY"] endpoint = os.environ["OPS_ENDPOINT"] print "%s:%s:%s" % (username, apikey, endpoint,) yh = Yhat( username, apikey, endpoint ) yh.deploy("RelayRidesPricing", MarketingSearchAPI, globals(), sure=True)
product - a product id (integer) """ p = dists[products].apply(lambda row: np.sum(row), axis=1) p = p.order(ascending=False) return p.index[p.index.isin(products) == False] get_sims(["Sierra Nevada Pale Ale", "120 Minute IPA", "Stone Ruination IPA"]) from yhat import Yhat, YhatModel, preprocess class BeerRecommender(YhatModel): @preprocess(in_type=dict, out_type=dict) def execute(self, data): beers = data.get("beers") suggested_beers = get_sims(beers) result = [] for beer in suggested_beers: result.append({"beer": beer}) return result yh = Yhat("YOUR_USERNAME", "YOUR_APIKEY", "http://cloud.yhathq.com/") if raw_input("Deploy? (y/N)") == "y": print yh.deploy("BeerRecommender", BeerRecommender, globals()) print yh.predict("BeerRecommender", {"beers": ["Sierra Nevada Pale Ale", "120 Minute IPA", "Stone Ruination IPA"]})
data = data[features] prob = glm.predict_proba(data)[0][1] if prob > 0.3: decline_code = "Credit score too low" else: decline_code = "" odds = glm.predict_log_proba(data)[0][1] score = calculate_score(odds) output = { "prob_default": [prob], "decline_code": [decline_code], "score": [score] } return output df_term[features].head() test = { "last_fico_range_low": 705, "last_fico_range_high": 732, "home_ownership": "MORTGAGE" } LoanModel().execute(test) yh = Yhat("colin", "d325fc5bcb83fc197ee01edb58b4b396", "https://sandbox.c.yhat.com/") yh.deploy("LendingClub", LoanModel, globals(), True)
beer = raw_data['beer'] weights = raw_data.get("weights", [1, 1, 1, 1]) # normalize the weights so they sum to 1.0 weights = [float(w) / sum(weights) for w in weights] print "making recs for: " + beer return (beer, weights) def predict(self, data): beer, weights = data results = [] for beer_cmp in self.beers: if beer!=beer_cmp: dist = calc_distance(self.simple_distances, beer, beer_cmp, weights) results.append((beer, beer_cmp, dist)) dists = sorted(results, key=lambda x: x[2]) # return dists return normalize_dists(dists) yh = Yhat({USERNAME}, {APIKEY}) myBeerModel = BeerRec(simple_distances=simple_distances, beers=beers, udfs=[calc_distance, normalize_dists]) if raw_input("Deploy? (y/N)")=="y": print yh.deploy("BeerRec", myBeerModel) print yh.predict("BeerRec", None, {"beer": "Coors Light"})
return p[0:n_recs] get_sims(["Sierra Nevada Pale Ale", "60 Minute IPA"]) from yhat import Yhat, YhatModel, preprocess class BeerRecommender(YhatModel): REQUIREMENTS=['numpy==1.11.3', 'pandas==0.19.2', 'scikit-learn==0.18.1'] def execute(self, data): beers = data.get("beers") n_recs = data.get("n_recs") prob = data.get("prob") unique = data.get("unique") suggested_beers = get_sims(beers, n_recs, prob, unique) result = suggested_beers.to_dict(orient='records') return result model = BeerRecommender() model.execute({'beers':["Sierra Nevada Pale Ale"],'n_recs':10}) yh = Yhat("demo-master", "3b0160e10f6d7a94a2528b11b1c9bca1", "https://sandbox.c.yhat.com/") print yh.deploy("BeerRecommender", BeerRecommender, globals(), autodetect=False, sure=True) # print yh.predict("BeerRecommender", {"beers": ["Sierra Nevada Pale Ale", # "120 Minute IPA", "Stone Ruination IPA"]})
features = df.columns[df.columns != "MEDVALUE"] target = "MEDVALUE" y = df[target] X = df.drop(target, 1) X_train, X_test, y_train, y_test = train_test_split(X, y) clf = linear_model.LinearRegression() clf.fit(X_train,y_train) y_pred = clf.predict(X_test) print r2_score(y_test, y_pred) from yhat import Yhat, YhatModel, preprocess, df_to_json class HousePred(YhatModel): @preprocess(in_type=pd.DataFrame, out_type=pd.DataFrame) def execute(self, data): result = clf.predict(data[features]) df = pd.DataFrame(data={'predicted_price': result}) return df yh = Yhat( "YHAT_USERNAME", "YHAT_APIKEY", "http://cloud.yhathq.com/") yh.deploy("HouseValuePredictor", HousePred, globals()) print df_to_json(df[:1])
texts = data["texts"] return make_prediction(texts) # example handling a single record example = { "texts": { "text": "Alpo dog food" } } pp.pprint(ProductClassifier().execute(example)) # example handling multiple records example = { "texts": [ {"text": "Alpo dog food" }, {"text": "Diet Coke"} ] } pp.pprint(ProductClassifier().execute(example)) YHAT_USERNAME = "" YHAT_APIKEY = "" try: yh = Yhat(YHAT_USERNAME, YHAT_APIKEY, "http://cloud.yhathq.com/") except: print "Please add in your YHAT_USERNAME and YHAT_APIKEY" sys.exit(1) print yh.deploy("ProductClassifier", ProductClassifier, globals())
from yhat import Yhat, YhatModel , preprocess class HelloWorld(YhatModel): @preprocess(in_type=dict, out_type=dict) def execute(self, data): me = data['name'] greeting = "Hello " + str(me) + "!" return { "greeting": greeting } yh = Yhat("*****@*****.**", "ff7bb725be9e4a32af286f464b316a23", "http://umsi.yhathq.com/") yh.deploy ("HelloWorld", HelloWorld, globals())
# 1 4.9 3.0 1.4 # 2 4.7 3.2 1.3 y = pd.DataFrame(iris.data[:,3:4], columns=iris.feature_names[3:4]) # petal width (cm) # 0 0.2 # 1 0.2 # 2 0.2 regr = linear_model.LinearRegression() regr.fit(X, y) class LinReg(YhatModel): @preprocess(in_type=pd.DataFrame, out_type=pd.DataFrame) def execute(self, data): prediction = regr.predict(pd.DataFrame(data)) return prediction username = os.environ["USERNAME"] apikey = os.environ["APIKEY"] endpoint = os.environ["OPS_ENDPOINT"] print "%s:%s:%s" % (username, apikey, endpoint,) yh = Yhat( username, apikey, endpoint ) yh.deploy("LinearRegression", LinReg, globals(), sure=True)
def test_deployment(self): yh = Yhat("foo", "bar", "http://api.yhathq.com/") _, bundle = yh.deploy("HelloWorld", HelloWorld, globals(), dry_run=True) self.assertTrue(True)
return self.dv.transform(doc) def predict(self, x): """ Evaluate model on array delegates to LinearRegression self.lr returns a dict (will be json encoded) suppling "predictedPrice", "suspectedOutlier", "x", "threshold" where "x" is the input vector and "threshold" is determined whether or not a listing is a suspected outlier. """ doc = self.dv.inverse_transform(x)[0] predicted = self.lr.predict(x)[0] err = abs(predicted - doc["price"]) return { "predictedPrice": predicted, "x": doc, "suspectedOutlier": 1 if (err > self.threshold) else 0, "threshold": self.threshold, } pm = PricingModel(dv=dv, lr=LR, threshold=np.percentile(trainingErrs, 95)) print pm.execute(testing.T.to_dict()[0]) if raw_input("Deploy? (y/N): ").lower() == "y": username = "******" apikey = "abcd1234" yh = Yhat(username, apikey, "http://cloud.yhathq.com/") print yh.deploy(model_name, fitted_model)
from example_app.models.yhat_model import TestModel, Foo from yhat import Yhat import json yh = Yhat( "greg", "foo", "http://api.yhat.com/" ) TestModel().execute(1) # _, bundle = yh.deploy("Foo", TestModel, globals(), dry_run=True) yh.deploy("Foo", TestModel, globals(), verbose=2) # print json.dumps(bundle, indent=2)
red_upper = np.array([50, 56, 200], dtype = "uint8") mask = cv2.inRange(image, red_lower, red_upper) output = cv2.bitwise_and(image, image, mask = mask) output_gray = rgb2gray(output) total_red = np.sum(output_gray) y, x = ndimage.center_of_mass(output_gray) data = { "x": x, "y": y, "xmax": output_gray.shape[1], "ymax": output_gray.shape[0], "total_red": total_red, "time": time.time() } return data from yhat import Yhat, YhatModel class DroneModel(YhatModel): REQUIREMENTS = [ "opencv" ] def execute(self, data): return get_coords(data['image64']) yh = Yhat(username, apikey, url) yh.deploy("DroneModel", DroneModel, globals(), True)
import os from yhat import Yhat, YhatModel, preprocess class HelloWorld(YhatModel): VERSION = int(os.environ["MODEL_VERSION"]) @preprocess(in_type=dict, out_type=dict) def execute(self, data): return { "version": self.VERSION } username = os.environ["USERNAME"] apikey = os.environ["APIKEY"] endpoint = os.environ["OPS_ENDPOINT"] print "%s:%s:%s" % (username, apikey, endpoint,) yh = Yhat( username, apikey, endpoint ) yh.deploy("modelenvvars", HelloWorld, globals(), sure=True)
training_val = RFmodel.score(transform_dummies(X_train,False), y_train) testing_val = RFmodel.score(transform_dummies(X_test,False), y_test) print "training:", testing_val print "testing: ", training_val ############ DEPLOYMENT ###################### from yhat import Yhat, YhatModel, preprocess class TravisModel(YhatModel): def fit_val(self): testing_val = RFmodel.score(transform_dummies(X_test, False), y_test) return testing_val def execute(self,data): data = transform_dummies(data,False) output = RFmodel.predict(data) return output.tolist() ########## DEPLOY SET ##################### if __name__ == '__main__': yh = Yhat( os.environ['YHAT_USERNAME'], os.environ['YHAT_APIKEY'], os.environ['YHAT_URL'], ) yh.deploy("TravisModel", TravisModel, globals(), True)
features = df.columns[df.columns != "MEDVALUE"] target = "MEDVALUE" y = df[target] X = df.drop(target, 1) X_train, X_test, y_train, y_test = train_test_split(X, y) clf = linear_model.LinearRegression() clf.fit(X_train, y_train) y_pred = clf.predict(X_test) print r2_score(y_test, y_pred) from yhat import Yhat, YhatModel, preprocess, df_to_json class HousePred(YhatModel): @preprocess(in_type=pd.DataFrame, out_type=pd.DataFrame) def execute(self, data): result = clf.predict(data[features]) df = pd.DataFrame(data={'predicted_price': result}) return df yh = Yhat("YHAT_USERNAME", "YHAT_APIKEY", "http://cloud.yhathq.com/") yh.deploy("HouseValuePredictor", HousePred, globals()) print df_to_json(df[:1])
import os from yhat import Yhat, YhatModel, preprocess class HelloWorld(YhatModel): @preprocess(in_type=dict, out_type=dict) def execute(self, data): me = data['name'] greeting = "Hello %s!" % me return {"greeting": greeting} username = os.environ["USERNAME"] apikey = os.environ["APIKEY"] endpoint = os.environ["OPS_ENDPOINT"] print "%s:%s:%s" % ( username, apikey, endpoint, ) yh = Yhat(username, apikey, endpoint) yh.deploy("HelloWorld", HelloWorld, globals(), sure=True)
iris = load_iris() X = pd.DataFrame(iris.data, columns=iris.feature_names) y = pd.DataFrame(iris.target, columns=["flower_types"]) clf = SVC() clf.fit(X, y["flower_types"]) class MySVC(YhatModel): @preprocess(in_type=pd.DataFrame, out_type=pd.DataFrame) def execute(self, data): prediction = clf.predict(pd.DataFrame(data)) species = ['setosa', 'versicolor', 'virginica'] result = [species[i] for i in prediction] return result username = os.environ["USERNAME"] apikey = os.environ["APIKEY"] endpoint = os.environ["OPS_ENDPOINT"] print "%s:%s:%s" % (username, apikey, endpoint,) yh = Yhat( username, apikey, endpoint ) yh.deploy("SupportVectorClassifier", MySVC, globals(), sure=True)
import os from yhat import Yhat, YhatModel, preprocess from foo.foo import print_foo from module import function_in_same_dir class HelloWorld(YhatModel): @preprocess(in_type=dict, out_type=dict) def execute(self, data): me = data['name'] greeting = "Hello %s!" % me print_foo(me) return {"greeting": greeting, "nine": function_in_same_dir()} username = os.environ["USERNAME"] apikey = os.environ["APIKEY"] endpoint = os.environ["OPS_ENDPOINT"] print "%s:%s:%s" % ( username, apikey, endpoint, ) yh = Yhat(username, apikey, endpoint) yh.deploy("HelloWorldPkg", HelloWorld, globals(), sure=True, verbose=1)
features = [{"name": "x", "na_filler": 0}, {"name": "z", "na_filler": fill_z}] class MyOtherClass: def hello(self, x): return "hello: %s" % str(x) REQS = open("reqs.txt").read() ### <DEPLOYMENT START> ### # @preprocess(in_type=dict, out_type=pd.DataFrame, null_handler=features) class MyModel(YhatModel): REQUIREMENTS = REQS @preprocess(out_type=pd.DataFrame) def execute(self, data): return predict(data) # "push" to server would be here data = {"x": 1, "z": None} if __name__ == '__main__': creds = credentials.read() yh = Yhat(creds['username'], creds['apikey'], "http://localhost:3000/") yh.deploy("mynewmodel", MyModel, globals())
yahoo_data = aData yahoo_data.sort(columns = 'user_id', ascending = True, inplace = True) # no pass by value # rating-based CF recommendations data = {'user': [15], 'products':[123764, 71142], 'n':10} aGraphlab_Model = Graphlab_Recommender(dataset = yahoo_data) print aGraphlab_Model.predict(data) """ USA TODAY """ # rating-based CF recommendations usaToday_data = aData param = {'user_id':'Reviewer', 'product_id':'Id', 'ratings': 'Rating'} data = {'user': ['Edna Gundersen'], 'products':[123901], 'n':10} aGraphlab_Model = Graphlab_Recommender(dataset = usaToday_data, needed_param = param) print aGraphlab_Model.predict(data) # textual analytics + CF method param = {'comment': 'Brief', 'ratings': 'Rating', 'user_id':'Reviewer', 'product_id':'Id'} model, ratings_data = rec.sentiment_analysis_regress(usaToday_data, param) ratings_data = ratings_data.sort(columns = 'user_id') ratings_data['user_id'] = ratings_data['user_id'].fillna('anonymous') print ratings_data aGraphlab_Model = Graphlab_Recommender(dataset = ratings_data) data = {'user': ['Edna Gundersen'], 'products':[123901], 'n':10} print aGraphlab_Model.predict(data) ''' # deployment yh = Yhat("*****@*****.**", "b36b987283a83e5e4d2814af6ef0eda9", "http://cloud.yhathq.com/") yh.deploy("Final_Recommender", Final_Recommender, globals())
iris = load_iris() X = pd.DataFrame(iris.data, columns=iris.feature_names) y = pd.DataFrame(iris.target, columns=["flower_types"]) clf = SVC() clf.fit(X, y["flower_types"]) class MySVC(YhatModel): @preprocess(in_type=pd.DataFrame, out_type=pd.DataFrame) def execute(self, data): prediction = clf.predict(pd.DataFrame(data)) species = ['setosa', 'versicolor', 'virginica'] result = [species[i] for i in prediction] return result username = os.environ["USERNAME"] apikey = os.environ["APIKEY"] endpoint = os.environ["OPS_ENDPOINT"] print "%s:%s:%s" % ( username, apikey, endpoint, ) yh = Yhat(username, apikey, endpoint) yh.deploy("SupportVectorClassifier", MySVC, globals(), sure=True)
@preprocess(in_type=pd.DataFrame,out_type=pd.DataFrame) def execute(self,data): # Collect customer meta data response = data[['Area Code','Phone']] charges = ['Day Charge','Eve Charge','Night Charge','Intl Charge'] response['customer_worth'] = data[charges].sum(axis=1) # Convert yes no columns to bool data[yes_no_cols] = data[yes_no_cols] == 'yes' # Create feature space X = data[features].as_matrix().astype(float) X = scaler.transform(X) # Make prediction churn_prob = clf.predict_proba(X) response['churn_prob'] = churn_prob[:,1] # Calculate expected loss by churn response['expected_loss'] = response['churn_prob'] * response['customer_worth'] response = response.sort('expected_loss',ascending=False) # Return response DataFrame return response yh = Yhat( "e[at]yhathq.com", " MY APIKEY ", "http://cloud.yhathq.com/" ) print "Deploying model" response = yh.deploy("PythonChurnModel",ChurnModel,globals()) print json.dumps(response,indent=2)
data = pd.DataFrame(data) data = data[features] prob = glm.predict_proba(data)[0][1] if prob > 0.3: decline_code = "Credit score too low" else: decline_code = "" odds = glm.predict_log_proba(data)[0][1] score = calculate_score(odds) output = { "prob_default": [prob], "decline_code": [decline_code], "score": [score] } return output df_term[features].head() test = { "last_fico_range_low": 705, "last_fico_range_high": 732, "home_ownership": "MORTGAGE" } LoanModel().execute(test) yh = Yhat("austin", os.environ.get("SCIENCEOPS_API_KEY"), "https://sandbox.c.yhat.com/") yh.deploy("LendingClub", LoanModel, globals(), True)
{"name": "x", "na_filler": 0}, {"name": "z", "na_filler": fill_z} ] class MyOtherClass: def hello(self, x): return "hello: %s" % str(x) REQS = open("reqs.txt").read() ### <DEPLOYMENT START> ### # @preprocess(in_type=dict, out_type=pd.DataFrame, null_handler=features) class MyModel(YhatModel): REQUIREMENTS=REQS @preprocess(out_type=pd.DataFrame) def execute(self, data): return predict(data) # "push" to server would be here data = {"x": 1, "z": None} if __name__ == '__main__': creds = credentials.read() yh = Yhat(creds['username'], creds['apikey'], "http://localhost:3000/") yh.deploy("mynewmodel", MyModel, globals())
import os import subprocess from yhat import Yhat, YhatModel, preprocess class HelloWorld(YhatModel): # ensure the environment has "tree" subprocess.check_output(["tree"]) @preprocess(in_type=dict, out_type=dict) def execute(self, data): me = data['name'] greeting = "Hello %s!" % me return { "greeting": greeting } username = os.environ["USERNAME"] apikey = os.environ["APIKEY"] endpoint = os.environ["OPS_ENDPOINT"] print "%s:%s:%s" % (username, apikey, endpoint,) yh = Yhat( username, apikey, endpoint ) yh.deploy("PyAptGet", HelloWorld, globals(), sure=True, packages=["tree"])
class ChurnModel(YhatModel): # Type casts incoming data as a dataframe @preprocess(in_type=pd.DataFrame, out_type=pd.DataFrame) def execute(self, data): # Collect customer meta data response = data[['Area Code', 'Phone']] charges = ['Day Charge', 'Eve Charge', 'Night Charge', 'Intl Charge'] response['customer_worth'] = data[charges].sum(axis=1) # Convert yes no columns to bool data[yes_no_cols] = data[yes_no_cols] == 'yes' # Create feature space X = data[features].as_matrix().astype(float) X = scaler.transform(X) # Make prediction churn_prob = clf.predict_proba(X) response['churn_prob'] = churn_prob[:, 1] # Calculate expected loss by churn response['expected_loss'] = response['churn_prob'] * response[ 'customer_worth'] response = response.sort('expected_loss', ascending=False) # Return response DataFrame return response yh = Yhat("e[at]yhathq.com", " MY APIKEY ", "http://cloud.yhathq.com/") print "Deploying model" response = yh.deploy("PythonChurnModel", ChurnModel, globals()) print json.dumps(response, indent=2)
class CurrencyPortfolio(YhatModel): @preprocess(in_type=dict, out_type=dict) def execute(self, data): P = matrix(data['risk_aversion'] * returns_cov.as_matrix()) q = matrix(-exp_returns['mean'].as_matrix()) G = matrix(0.0, (len(q),len(q))) G[::len(q)+1] = -1.0 h = matrix(0.0, (len(q),1)) A = matrix(1.0, (1,len(q))) b = matrix(1.0) solution = solvers.qp(P, q, G, h, A, b) expected_return = exp_returns['mean'].dot(solution['x'])[0] variance = sum(solution['x'] * returns_cov.as_matrix().dot(solution['x']))[0] investments = {} for i, amount in enumerate(solution['x']): # Ignore values that appear to have converged to 0. if amount > 10e-5: investments[countries[i]] = amount*100 return { 'risk_aversion': data['risk_aversion'], 'investments': investments, 'expected_return': expected_return, 'variance': variance } yh = Yhat('USERNAME', 'APIKEY', 'http://cloud.yhathq.com/') yh.deploy('CurrencyPortfolio', CurrencyPortfolio, globals())
import os from yhat import Yhat, YhatModel, preprocess from foo.foo import print_foo from module import function_in_same_dir class HelloWorld(YhatModel): @preprocess(in_type=dict, out_type=dict) def execute(self, data): me = data['name'] greeting = "Hello %s!" % me print_foo(me) return { "greeting": greeting, "nine": function_in_same_dir() } username = os.environ["USERNAME"] apikey = os.environ["APIKEY"] endpoint = os.environ["OPS_ENDPOINT"] print "%s:%s:%s" % (username, apikey, endpoint,) yh = Yhat( username, apikey, endpoint ) yh.deploy("HelloWorldPkg", HelloWorld, globals(), sure=True, verbose=1)
def parse_tweet(tweet): trees = nltk.ne_chunk(nltk.pos_tag(nltk.word_tokenize(tweet))) for tree in trees.subtrees(): etype = None if tree.node == "PERSON": etype = "PERSON" elif tree.node == "GPE": etype = "PLACE" if etype is not None: ne = " ".join([leaf[0] for leaf in tree.leaves()]) tweet = tweet.replace(ne, "<" + etype + ">" + ne + "</" + etype + ">") return tweet class Tagger(YhatModel): @preprocess(in_type=dict, out_type=dict) def execute(self, raw): tweet = raw['text'] tagged = parse_tweet(tweet) raw['tagged'] = tagged return raw tg = Tagger() yh = Yhat("greg", "mykey", YHAT_URL) print yh.deploy("NamedEntityTagger" + str(i), Tagger, globals())
import os from yhat import Yhat, YhatModel, preprocess class HelloWorld(YhatModel): @preprocess(in_type=dict, out_type=dict) def execute(self, data): me = data['name'] greeting = "Hello %s!" % me return { "greeting": greeting } username = os.environ["USERNAME"] apikey = os.environ["APIKEY"] endpoint = os.environ["OPS_ENDPOINT"] print "%s:%s:%s" % (username, apikey, endpoint,) yh = Yhat( username, apikey, endpoint ) yh.deploy("IndentedModel", HelloWorld, globals(), sure=True)
""" p = dists[products].apply(lambda row: np.sum(row), axis=1) p = p.order(ascending=False) return p.index[p.index.isin(products)==False] class BeerRecommender(YhatModel): @preprocess(in_type=dict, out_type=dict) def execute(self, data): # handle uft8 beer names beers = [beer.encode('utf8') for beer in data.get("beers", [])] suggested_beers = get_sims(beers) result = [] for beer in suggested_beers: result.append({"beer": beer}) return result username = os.environ["USERNAME"] apikey = os.environ["APIKEY"] endpoint = os.environ["OPS_ENDPOINT"] print "%s:%s:%s" % (username, apikey, endpoint,) yh = Yhat( username, apikey, endpoint ) yh.deploy("BeerRecommender", BeerRecommender, globals(), sure=True)
from yhat import Yhat, YhatModel, preprocess x = range(10) class HelloWorld(YhatModel): @preprocess(in_type=dict, out_type=dict) def execute(self, data): print x[:10] me = data['name'] greeting = "Hello " + str(me) + "!" return {"greeting": greeting, "x": x} # yh = Yhat("greg", "fCVZiLJhS95cnxOrsp5e2VSkk0GfypZqeRCntTD1nHA", "http://cloud.yhathq.com/") yh = Yhat("greg", "9207b9a2dd9d48848b139b729d4354bc", "http://localhost:8080/") yh.deploy("NewZippedModel", HelloWorld, globals())
p = dists[products].apply(lambda row: np.sum(row), axis=1) p = p.order(ascending=False) return p.index[p.index.isin(products) == False] class BeerRecommender(YhatModel): @preprocess(in_type=dict, out_type=dict) def execute(self, data): # handle uft8 beer names beers = [beer.encode('utf8') for beer in data.get("beers", [])] suggested_beers = get_sims(beers) result = [] for beer in suggested_beers: result.append({"beer": beer}) return result username = os.environ["USERNAME"] apikey = os.environ["APIKEY"] endpoint = os.environ["OPS_ENDPOINT"] print "%s:%s:%s" % ( username, apikey, endpoint, ) yh = Yhat(username, apikey, endpoint) yh.deploy("BeerRecommender", BeerRecommender, globals(), sure=True)