Ejemplo n.º 1
0
def main():

    model = YOLOv3Net(cfgfile, model_size, num_classes)
    model.load_weights(weightfile)

    class_names = load_class_names(class_name)

    image = cv2.imread(img_path)
    image = np.array(image)
    image = tf.expand_dims(image, 0)

    resized_frame = resize_image(image, (model_size[0], model_size[1]))
    pred = model.predict(resized_frame)

    boxes, scores, classes, nums = output_boxes( \
        pred, model_size,
        max_output_size=max_output_size,
        max_output_size_per_class=max_output_size_per_class,
        iou_threshold=iou_threshold,
        confidence_threshold=confidence_threshold)

    image = np.squeeze(image)
    img = draw_outputs(image, boxes, scores, classes, nums, class_names)

    win_name = 'Image detection'
    cv2.imshow(win_name, img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
Ejemplo n.º 2
0
def main():

    model = YOLOv3Net(cfgfile, model_size, num_classes)

    model.load_weights(weightfile)

    class_names = load_class_names(class_name)

    win_name = 'Yolov3 detection'
    cv2.namedWindow(win_name)

    #specify the vidoe input.
    # 0 means input from cam 0.
    # For vidio, just change the 0 to video path
    cap = cv2.VideoCapture(0)
    frame_size = (cap.get(cv2.CAP_PROP_FRAME_WIDTH),
                  cap.get(cv2.CAP_PROP_FRAME_HEIGHT))

    try:
        while True:
            start = time.time()
            ret, frame = cap.read()
            if not ret:
                break

            resized_frame = tf.expand_dims(frame, 0)
            resized_frame = resize_image(resized_frame,
                                         (model_size[0], model_size[1]))

            pred = model.predict(resized_frame)

            boxes, scores, classes, nums = output_boxes( \
                pred, model_size,
                max_output_size=max_output_size,
                max_output_size_per_class=max_output_size_per_class,
                iou_threshold=iou_threshold,
                confidence_threshold=confidence_threshold)

            img = draw_outputs(frame, boxes, scores, classes, nums,
                               class_names)
            cv2.imshow(win_name, img)

            stop = time.time()

            seconds = stop - start
            # print("Time taken : {0} seconds".format(seconds))

            # Calculate frames per second
            fps = 1 / seconds
            print("Estimated frames per second : {0}".format(fps))

            key = cv2.waitKey(1) & 0xFF

            if key == ord('q'):
                break

    finally:
        cv2.destroyAllWindows()
        cap.release()
        print('Detections have been performed successfully.')
Ejemplo n.º 3
0
def get_prediction(inputimage):
    model = YOLOv3Net(cfgfile, model_size, num_classes)
    model.load_weights(weightfile)
    class_names = load_class_names(class_name)
    win_name = 'Yolov3 detection'
    cv2.namedWindow(win_name)
    #specify the vidoe input.
    # 0 means input from cam 0.
    # For vidio, just change the 0 to video path
    frame = cv2.imread(inputimage, 1)
    frame_size = frame.shape

    try:
        # Read frame
        resized_frame = tf.expand_dims(frame, 0)
        resized_frame = resize_image(resized_frame,
                                     (model_size[0], model_size[1]))
        pred = model.predict(resized_frame)
        boxes, scores, classes, nums = output_boxes( \
            pred, model_size,
            max_output_size=max_output_size,
            max_output_size_per_class=max_output_size_per_class,
            iou_threshold=iou_threshold,
            confidence_threshold=confidence_threshold)
        img = draw_outputs(frame, boxes, scores, classes, nums, class_names)
        cv2.imshow(win_name, img)
        cv2.imwrite('outputimgage.jpg', img)
        # print("Time taken : {0} seconds".format(seconds))
        # Calculate frames per second

    finally:
        cv2.waitKey()
        cv2.destroyAllWindows()
        print('Detections have been performed successfully.')
        return img
Ejemplo n.º 4
0
def main(img_path, image_name):
    model = YOLOv3Net(cfgfile,model_size,num_classes)
    model.load_weights(weightfile)
    class_names = load_class_names(class_name)
    image = cv2.imread(os.path.join(img_path, "{}.jpg".format(image_name)))
    image = np.array(image)
    image = tf.expand_dims(image, 0)
    resized_frame = resize_image(image, (model_size[0],model_size[1]))
    pred = model.predict(resized_frame)
    boxes, scores, classes, nums = output_boxes( \
        pred, model_size,
        max_output_size=max_output_size,
        max_output_size_per_class=max_output_size_per_class,
        iou_threshold=iou_threshold,
        confidence_threshold=confidence_threshold)
    image = np.squeeze(image)
    img = draw_outputs(image, boxes, scores, classes, nums, class_names)
    # win_name = 'Image detection'
    # cv2.imshow(win_name, img)
    # time.sleep(20)
    # cv2.destroyAllWindows()

    #If you want to save the result, uncommnent the line below:
    os.path.join(img_path, 'image_yolo.jpg')
    cv2.imwrite(os.path.join(img_path, "{}_yolo.jpg".format(image_name)), img)
def main():
    weightfile = "weights/yolov3.weights"
    cfgfile = "cfg/yolov3.cfg"
    model_size = (416, 416, 3)
    num_classes = 80
    model = YOLOv3Net(cfgfile, model_size, num_classes)
    load_weights(model, cfgfile, weightfile)
    try:
        model.save_weights('weights/yolov3_weights.tf')
        print('\nThe file \'yolov3_weights.tf\' has been saved successfully.')
    except IOError:
        print("Couldn't write the file \'yolov3_weights.tf\'.")
Ejemplo n.º 6
0
def main():
    weightfile = "weights/yolov3.weights"
    cfgfile = "cfg/yolov3.cfg"

    model_size = (416, 416, 3)
    num_classes = 80

    model = YOLOv3Net(cfgfile, model_size, num_classes)

    load_weights(model, cfgfile, weightfile)

    try:
        model.save_weights('weights/yolov3_weights.tf')
        print('\nFile is saved in tensor  format')
    except IOError:
        print(" caouldn't write file to tensor")
Ejemplo n.º 7
0
def main():

    weightfile = "weights/yolov3.weights"
    cfgfile = "cfg/yolov3_cfg.txt"

    model_size = (416, 416, 3)
    num_classes = 80

    model = YOLOv3Net(cfgfile, model_size, num_classes)
    load_weights(model, cfgfile, weightfile)

    try:
        model.save_weights("weights/yolov3_weights.tf")
        print('\'yolov3_weights.tf\' has been saved')

    except IOError:
        print("Unable to write to \'yolov3_weights.tf\'")
Ejemplo n.º 8
0
def main():
    model = YOLOv3Net(cfgfile, model_size, num_classes)
    model.load_weights(weightfile)
    class_names = load_class_names(class_name)
    print("class_names", class_names)
    image = cv2.imread(img_path)
    image = np.array(image)
    image = tf.expand_dims(image, 0)
    resized_frame = resize_image(image, (model_size[0], model_size[1]))
    pred = model.predict(resized_frame)
    boxes, scores, classes, nums = output_boxes( \
        pred, model_size,
        max_output_size=max_output_size,
        max_output_size_per_class=max_output_size_per_class,
        iou_threshold=iou_threshold,
        confidence_threshold=confidence_threshold)
    image = np.squeeze(image)
    img = draw_outputs(image, boxes, scores, classes, nums, class_names)
    cv2.imwrite('result1.jpg', img)
Ejemplo n.º 9
0
def detect_image(img_path):
    model = YOLOv3Net(cfg.CFGFILE,cfg.MODEL_SIZE,cfg.NUM_CLASSES)
    model.load_weights(cfg.WEIGHTFILE)
    class_names = load_class_names(cfg.CLASS_NAME)
    image = cv2.imread(img_path)
    image = np.array(image)
    image = tf.expand_dims(image, 0)
    resized_frame = resize_image(image, (cfg.MODEL_SIZE[0],cfg.MODEL_SIZE[1]))
    pred = model.predict(resized_frame)
    boxes, scores, classes, nums = output_boxes( \
        pred, cfg.MODEL_SIZE,
        max_output_size=max_output_size,
        max_output_size_per_class=max_output_size_per_class,
        iou_threshold=cfg.IOU_THRESHOLD,
        confidence_threshold=cfg.CONFIDENCE_THRESHOLD)
    image = np.squeeze(image)
    img = draw_outputs(image, boxes, scores, classes, nums, class_names)
    win_name = 'Detection'
    cv2.imshow(win_name, img)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
Ejemplo n.º 10
0
def detect_video(video_path):
    model = YOLOv3Net(cfg.CFGFILE, cfg.MODEL_SIZE, cfg.NUM_CLASSES)
    model.load_weights(cfg.WEIGHTFILE)
    class_names = load_class_names(cfg.CLASS_NAME)
    win_name = 'Detection'
    cv2.namedWindow(win_name)
    cap = cv2.VideoCapture(returnCameraOrFile(video_path))
    frame_size = (cap.get(cv2.CAP_PROP_FRAME_WIDTH),
                  cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
    try:
        while True:
            start = time.time()
            ret, frame = cap.read()
            if not ret:
                break
            resized_frame = tf.expand_dims(frame, 0)
            resized_frame = resize_image(
                resized_frame, (cfg.MODEL_SIZE[0], cfg.MODEL_SIZE[1]))
            pred = model.predict(resized_frame)
            boxes, scores, classes, nums = output_boxes( \
                pred, cfg.MODEL_SIZE,
                max_output_size=max_output_size,
                max_output_size_per_class=max_output_size_per_class,
                iou_threshold=cfg.IOU_THRESHOLD,
                confidence_threshold=cfg.CONFIDENCE_THRESHOLD)
            img = draw_outputs(frame, boxes, scores, classes, nums,
                               class_names)
            cv2.imshow(win_name, img)
            stop = time.time()
            seconds = stop - start
            # Calculate frames per second
            fps = 1 / seconds
            print("Frames per second : {0}".format(fps))
            key = cv2.waitKey(1) & 0xFF
            if key == ord('q'):
                break
    finally:
        cv2.destroyAllWindows()
        cap.release()
        print('Detections performed successfully.')
Ejemplo n.º 11
0
def main():

    model = YOLOv3Net(cfgfile, model_size, num_classes)
    model.load_weights(weightfile)

    class_names = load_class_names(class_name)

    image = cv2.imread(img_filename)
    image = np.array(image)
    image = tf.expand_dims(image, 0)

    resized_frame = resize_image(image, (model_size[0], model_size[1]))
    pred = model.predict(resized_frame)

    boxes, scores, classes, nums = output_boxes( \
        pred, model_size,
        max_output_size=max_output_size,
        max_output_size_per_class=max_output_size_per_class,
        iou_threshold=iou_threshold,
        confidence_threshold=confidence_threshold)

    print('boxes', boxes)
    print('scores', scores[scores >= confidence_threshold])
    print('classes', classes[classes != 0])
    print('nums', nums)
    return 0

    image = np.squeeze(image)
    img = draw_outputs(image, boxes, scores, classes, nums, class_names)

    # win_name = 'Image detection'
    # cv2.imshow(win_name, img)
    # cv2.waitKey(0)
    # cv2.destroyAllWindows()

    #If you want to save the result, uncommnent the line below:
    cv2.imwrite('data/images/output_dog.jpg', img)
Ejemplo n.º 12
0
def main():

    # Kreiranje modela
    model = YOLOv3Net(cfgfile, model_size, num_classes)
    # Učitavanje istreniranih koeficijenata u model
    model.load_weights(weightfile)
    # Učitavanje imena klasa
    class_names = load_class_names(class_name)
	
	# Učitavanje ulaznih fotografija i predobrada u format koji očekuje model
    images_left = []
    resized_images_left = []
    filenames_left = []
    
    # Load left camera data 
    [images_left, resized_images_left, filenames_left] = loadAndResize(img_path_left_cam)
    
    images_right = []
    resized_images_right = []
    filenames_right = []
    
    # Load right camera data 
    [images_right, resized_images_right, filenames_right] = loadAndResize(img_path_right_cam)
    
    # Object distance and bounding box index
    distanceIndexPair = []
    
    # Inferencija nad ulaznom slikom
    # izlazne predikcije pred - skup vektora (10647), gde svaki odgovara jednom okviru lokacije objekta 
    for i in range(0, len(filenames_left)):
        resized_image = []
        
        image = images_left[i]

        resized_image.append(resized_images_left[i])
        resized_image.append(resized_images_right[i])
        
        resized_image = tf.expand_dims(resized_image, 0)
        resized_image = np.squeeze(resized_image)
        
        pred = model.predict(resized_image)

        # Određivanje okvira oko detektovanih objekata (za određene pragove)
        boxes, scores, classes, nums = output_boxes( \
            pred, model_size,
            max_output_size=max_output_size,
            max_output_size_per_class=max_output_size_per_class,
            iou_threshold=iou_threshold,
            confidence_threshold=confidence_threshold)

        # calculate distance
        distanceIndexPair = objectDistance(images_left[i], images_right[i], boxes, nums, classes)

        out_img = draw_outputs(image, boxes, scores, classes, nums, class_names, cLeftCamId, distanceIndexPair)

        # Čuvanje rezultata u datoteku
        out_file_name = './out/Izlazna slika.png'
        cv2.imwrite(out_file_name, out_img)

        # Prikaz rezultata na ekran
        cv2.imshow(out_file_name, out_img)
        #cv2.waitKey(0)

        if(cv2.waitKey(20) & 0xFF == ord('q')):
            cv2.destroyAllWindows()
            break
Ejemplo n.º 13
0
def main():

    model = YOLOv3Net(cfgfile, model_size, num_classes)

    model.load_weights(weightfile)

    class_names = load_class_names(class_name)

    win_name = 'Yolov3 detection'
    cv2.namedWindow(win_name)

    # Specify the camera url.
    # For camera, just change the camera URL to match your IP camera RTSP stream or MPEG stream.
    cap = cv2.VideoCapture(
        "rtsp://*****:*****@172.168.50.208:554/cam/realmonitor?channel=1&subtype=1"
    )
    frame_size = (cap.get(cv2.CAP_PROP_FRAME_WIDTH),
                  cap.get(cv2.CAP_PROP_FRAME_HEIGHT))

    try:
        while True:
            start = time.time()
            cap.grab()  # Grab the most recent frame from the camera stream
            ret, frame = cap.read()  # Read it into a frame buffer
            if not ret:
                break

            resized_frame = tf.expand_dims(frame, 0)
            resized_frame = resize_image(resized_frame,
                                         (model_size[0], model_size[1]))

            pred = model.predict(resized_frame)

            boxes, scores, classes, nums = output_boxes( \
                pred, model_size,
                max_output_size=max_output_size,
                max_output_size_per_class=max_output_size_per_class,
                iou_threshold=iou_threshold,
                confidence_threshold=confidence_threshold)

            img = draw_outputs(frame, boxes, scores, classes, nums,
                               class_names)
            cv2.imshow(win_name, img)

            stop = time.time()

            seconds = stop - start
            # print("Time taken : {0} seconds".format(seconds))

            # Calculate frames per second
            fps = 1 / seconds
            print("Estimated frames per second : {0}".format(fps))

            key = cv2.waitKey(1) & 0xFF
            if key == ord('q'):
                break
            if key == 27:
                break

            # Adjust frame rate
            #if fps > 30:
            #    fps = fps * 0.5
            #    cap.set(cv2.CAP_PROP_FPS, int(fps))
            #    print("Changing frame rate to: {0}".format(int(fps)))
            #else:
            #    cap.set(cv2.CAP_PROP_FPS, 10)
            #    print("Changing frame rate to: {0}".format(int(fps)))

    finally:
        cv2.destroyAllWindows()
        cap.release()
        print('Detections have been performed successfully.')
Ejemplo n.º 14
0
class_name = './data/coco.names'
max_output_size = 40
max_output_size_per_class= 20

iou_threshold = 0.5

confidence_threshold = 0.5

cfgfile = 'cfg/yolov3.cfg'

weightfile = 'weights/yolov3_weights.tf'

img_path = "data/images/person.jpg"

model = YOLOv3Net(cfgfile,model_size,num_classes)
model.load_weights(weightfile)

# class_names = load_class_names(class_name)


app = Flask(__name__)

@app.route('/')
def index():
    return "<h1>The Server Works</h1>"

@app.route('/upload', methods=['POST'])
@cross_origin()
def upload_base64_file():
    """
Ejemplo n.º 15
0
def main():
    model = YOLOv3Net(cfgfile, model_size, num_classes)
    model.load_weights(weightfile)
    class_names = load_class_names(class_name)

    win_name = 'Yolov3 detection'
    cv2.namedWindow(win_name)

    #To read from camera.
    #cap = cv2.VideoCapture(0)

    #To read a video file.
    videopath = 'data/videos/test.mp4'
    cap = cv2.VideoCapture(videopath)

    frame_size = (cap.get(cv2.CAP_PROP_FRAME_WIDTH),
                  cap.get(cv2.CAP_PROP_FRAME_HEIGHT))

    try:
        i = 0
        while True:
            start = time.time()
            ret, frame = cap.read()
            #print(ret)
            if not ret:
                break

            resized_frame = tf.expand_dims(frame, 0)
            resized_frame = resize_image(resized_frame,
                                         (model_size[0], model_size[1]))

            pred = model.predict(resized_frame)

            boxes, scores, classes, nums = output_boxes(
                pred,
                model_size,
                max_output_size=max_output_size,
                max_output_size_per_class=max_output_size_per_class,
                iou_threshold=iou_threshold,
                confidence_threshold=confidence_threshold)

            img = draw_outputs(frame, boxes, scores, classes, nums,
                               class_names)
            cv2.imshow(win_name, img)

            frame_dir = 'output/frames/frame_%d.jpg' % i
            cv2.imwrite(frame_dir, img)
            i += 1

            stop = time.time()

            elapsed_time = stop - start

            fps = int(1 / elapsed_time)
            print("estimated fps : %d" % fps)
            key = cv2.waitKey(1)

            if key == ord('q'):
                break
    finally:
        cv2.destroyAllWindows()
        cap.release()
        print('Detection perfomed successfully.')