Ejemplo n.º 1
0
def attempt_load(weights, map_location=None):
    # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
    model = Ensemble()
    # add yolov5 folder to system path
    yolov5_folder_dir = str(Path(__file__).parents[1].absolute())
    sys.path.insert(0, yolov5_folder_dir)
    for w in weights if isinstance(weights, list) else [weights]:
        attempt_download(w)
        model.append(
            torch.load(w, map_location=map_location)
            ["model"].float().fuse().eval())  # load FP32 model
    # remove yolov5 folder from system path
    sys.path.remove(yolov5_folder_dir)

    # Compatibility updates
    for m in model.modules():
        if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6]:
            m.inplace = True  # pytorch 1.7.0 compatibility
        elif type(m) is Conv:
            m._non_persistent_buffers_set = set(
            )  # pytorch 1.6.0 compatibility

    if len(model) == 1:
        return model[-1]  # return model
    else:
        print("Ensemble created with %s\n" % weights)
        for k in ["names", "stride"]:
            setattr(model, k, getattr(model[-1], k))
        return model  # return ensemble
Ejemplo n.º 2
0
def attempt_load(weights, map_location=None):
    # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
    model = Ensemble()
    for w in weights if isinstance(weights, list) else [weights]:
        google_utils.attempt_download(w)
        model.append(torch.load(w, map_location=map_location)['model'].float().fuse().eval())  # load FP32 model

    if len(model) == 1:
        return model[-1]  # return model
    else:
        print('Ensemble created with %s\n' % weights)
        for k in ['names', 'stride']:
            setattr(model, k, getattr(model[-1], k))
        return model  # return ensemble
Ejemplo n.º 3
0
def load_model(model_path, device=None, autoshape=True, verbose=False):
    """
    Creates a specified YOLOv5 model

    Arguments:
        model_path (str): path of the model
        config_path (str): path of the config file
        device (str): select device that model will be loaded (cpu, cuda)
        pretrained (bool): load pretrained weights into the model
        autoshape (bool): make model ready for inference
        verbose (bool): if False, yolov5 logs will be silent

    Returns:
        pytorch model

    (Adapted from yolov5.hubconf.create)
    """
    # set logging
    set_logging(verbose=verbose)

    # set device if not given
    if not device:
        device = "cuda:0" if torch.cuda.is_available() else "cpu"

    # add yolov5 folder to system path
    here = Path(__file__).parent.absolute()
    yolov5_folder_dir = str(here)
    sys.path.insert(0, yolov5_folder_dir)

    attempt_download(model_path)  # download if not found locally
    model = torch.load(model_path, map_location=torch.device(device))
    if isinstance(model, dict):
        model = model["model"]  # load model
    hub_model = Model(model.yaml).to(next(model.parameters()).device)  # create
    hub_model.load_state_dict(model.float().state_dict())  # load state_dict
    hub_model.names = model.names  # class names
    model = hub_model

    # remove yolov5 folder from system path
    sys.path.remove(yolov5_folder_dir)

    if autoshape:
        model = model.autoshape()

    return model
    """
Ejemplo n.º 4
0
def create(name, pretrained, channels, classes, autoshape, verbose):
    """Creates a specified YOLOv5 model

    Arguments:
        name (str): name of model, i.e. 'yolov5s'
        pretrained (bool): load pretrained weights into the model
        channels (int): number of input channels
        classes (int): number of model classes

    Returns:
        pytorch model
    """
    try:
        set_logging(verbose=verbose)

        cfg = list((Path(__file__).parent /
                    'models').rglob(f'{name}.yaml'))[0]  # model.yaml path
        model = Model(cfg, channels, classes)
        if pretrained:
            fname = f'{name}.pt'  # checkpoint filename
            attempt_download(fname)  # download if not found locally
            ckpt = torch.load(fname, map_location=torch.device('cpu'))  # load
            msd = model.state_dict()  # model state_dict
            csd = ckpt['model'].float().state_dict(
            )  # checkpoint state_dict as FP32
            csd = {k: v
                   for k, v in csd.items()
                   if msd[k].shape == v.shape}  # filter
            model.load_state_dict(csd, strict=False)  # load
            if len(ckpt['model'].names) == classes:
                model.names = ckpt['model'].names  # set class names attribute
            if autoshape:
                model = model.autoshape(
                )  # for file/URI/PIL/cv2/np inputs and NMS
        device = select_device('0' if torch.cuda.is_available() else
                               'cpu')  # default to GPU if available
        return model.to(device)

    except Exception as e:
        help_url = 'https://github.com/ultralytics/yolov5/issues/36'
        s = 'Cache maybe be out of date, try force_reload=True. See %s for help.' % help_url
        raise Exception(s) from e
Ejemplo n.º 5
0
def attempt_load(weights, map_location=None):
    # Loads an ensemble of models weights=[a,b,c] or a single model weights=[a] or weights=a
    model = Ensemble()
    for w in weights if isinstance(weights, list) else [weights]:
        attempt_download(w)
        model.append(torch.load(w, map_location=map_location)['model'].float().fuse().eval())  # load FP32 model

    # Compatibility updates
    for m in model.modules():
        if type(m) in [nn.Hardswish, nn.LeakyReLU, nn.ReLU, nn.ReLU6]:
            m.inplace = True  # pytorch 1.7.0 compatibility
        elif type(m) is Conv:
            m._non_persistent_buffers_set = set()  # pytorch 1.6.0 compatibility

    if len(model) == 1:
        return model[-1]  # return model
    else:
        print('Ensemble created with %s\n' % weights)
        for k in ['names', 'stride']:
            setattr(model, k, getattr(model[-1], k))
        return model  # return ensemble
Ejemplo n.º 6
0
def create(name, pretrained, channels, classes, autoshape):
    """Creates a specified YOLOv5 model

    Arguments:
        name (str): name of model, i.e. 'yolov5s'
        pretrained (bool): load pretrained weights into the model
        channels (int): number of input channels
        classes (int): number of model classes

    Returns:
        pytorch model
    """
    config = Path(
        __file__).parent / "models" / f"{name}.yaml"  # model.yaml path
    try:
        model = Model(config, channels, classes)
        if pretrained:
            fname = f"{name}.pt"  # checkpoint filename
            attempt_download(fname)  # download if not found locally
            ckpt = torch.load(fname, map_location=torch.device("cpu"))  # load
            state_dict = ckpt["model"].float().state_dict()  # to FP32
            state_dict = {
                k: v
                for k, v in state_dict.items()
                if model.state_dict()[k].shape == v.shape
            }  # filter
            model.load_state_dict(state_dict, strict=False)  # load
            if len(ckpt["model"].names) == classes:
                model.names = ckpt["model"].names  # set class names attribute
            if autoshape:
                model = model.autoshape(
                )  # for file/URI/PIL/cv2/np inputs and NMS
        return model

    except Exception as e:
        help_url = "https://github.com/ultralytics/yolov5/issues/36"
        s = (
            "Cache maybe be out of date, try force_reload=True. See %s for help."
            % help_url)
        raise Exception(s) from e
Ejemplo n.º 7
0
if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--weights', type=str, default='./yolov5s.pt', help='weights path')
    parser.add_argument('--img-size', nargs='+', type=int, default=[640, 640], help='image size')
    parser.add_argument('--batch-size', type=int, default=1, help='batch size')
    opt = parser.parse_args()
    opt.img_size *= 2 if len(opt.img_size) == 1 else 1  # expand
    print(opt)
    set_logging()

    # Input
    img = torch.zeros((opt.batch_size, 3, *opt.img_size))  # image size(1,3,320,192) iDetection

    # Load PyTorch model
    attempt_download(opt.weights)
    model = torch.load(opt.weights, map_location=torch.device('cpu'))['model'].float()
    model.eval()
    model.model[-1].export = True  # set Detect() layer export=True
    y = model(img)  # dry run

    # TorchScript export
    try:
        print('\nStarting TorchScript export with torch %s...' % torch.__version__)
        f = opt.weights.replace('.pt', '.torchscript.pt')  # filename
        ts = torch.jit.trace(model, img)
        ts.save(f)
        print('TorchScript export success, saved as %s' % f)
    except Exception as e:
        print('TorchScript export failure: %s' % e)
Ejemplo n.º 8
0
def train(hyp, opt, device, tb_writer=None):
    logger.info(f'Hyperparameters {hyp}')
    log_dir = Path(tb_writer.log_dir) if tb_writer else Path(
        opt.logdir) / 'evolve'  # logging directory
    wdir = log_dir / 'weights'  # weights directory
    os.makedirs(wdir, exist_ok=True)
    last = wdir / 'last.pt'
    best = wdir / 'best.pt'
    results_file = str(log_dir / 'results.txt')
    epochs, batch_size, total_batch_size, weights, rank = \
        opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank

    # Save run settings
    with open(log_dir / 'hyp.yaml', 'w') as f:
        yaml.dump(hyp, f, sort_keys=False)
    with open(log_dir / 'opt.yaml', 'w') as f:
        yaml.dump(vars(opt), f, sort_keys=False)

    # Configure
    cuda = device.type != 'cpu'
    init_seeds(2 + rank)
    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.FullLoader)  # data dict
    with torch_distributed_zero_first(rank):
        check_dataset(data_dict)  # check
    train_path = data_dict['train']
    test_path = data_dict['val']
    nc, names = (1, ['item']) if opt.single_cls else (int(
        data_dict['nc']), data_dict['names'])  # number classes, names
    assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (
        len(names), nc, opt.data)  # check

    # Model
    pretrained = weights.endswith('.pt')
    if pretrained:
        with torch_distributed_zero_first(rank):
            attempt_download(weights)  # download if not found locally
        ckpt = torch.load(weights, map_location=device)  # load checkpoint
        if hyp.get('anchors'):
            ckpt['model'].yaml['anchors'] = round(
                hyp['anchors'])  # force autoanchor
        model = Model(opt.cfg or ckpt['model'].yaml, ch=3,
                      nc=nc).to(device)  # create
        exclude = ['anchor'] if opt.cfg or hyp.get('anchors') else [
        ]  # exclude keys
        state_dict = ckpt['model'].float().state_dict()  # to FP32
        state_dict = intersect_dicts(state_dict,
                                     model.state_dict(),
                                     exclude=exclude)  # intersect
        model.load_state_dict(state_dict, strict=False)  # load
        logger.info(
            'Transferred %g/%g items from %s' %
            (len(state_dict), len(model.state_dict()), weights))  # report
    else:
        model = Model(opt.cfg, ch=3, nc=nc).to(device)  # create

    # Freeze
    freeze = [
        '',
    ]  # parameter names to freeze (full or partial)
    if any(freeze):
        for k, v in model.named_parameters():
            if any(x in k for x in freeze):
                print('freezing %s' % k)
                v.requires_grad = False

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / total_batch_size),
                     1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= total_batch_size * accumulate / nbs  # scale weight_decay

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_parameters():
        v.requires_grad = True
        if '.bias' in k:
            pg2.append(v)  # biases
        elif '.weight' in k and '.bn' not in k:
            pg1.append(v)  # apply weight decay
        else:
            pg0.append(v)  # all else

    if opt.adam:
        optimizer = optim.Adam(pg0,
                               lr=hyp['lr0'],
                               betas=(hyp['momentum'],
                                      0.999))  # adjust beta1 to momentum
    else:
        optimizer = optim.SGD(pg0,
                              lr=hyp['lr0'],
                              momentum=hyp['momentum'],
                              nesterov=True)

    optimizer.add_param_group({
        'params': pg1,
        'weight_decay': hyp['weight_decay']
    })  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' %
                (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
    lf = lambda x: ((1 + math.cos(x * math.pi / epochs)) / 2) * (1 - hyp[
        'lrf']) + hyp['lrf']  # cosine
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    # plot_lr_scheduler(optimizer, scheduler, epochs)

    # Resume
    start_epoch, best_fitness = 0, 0.0
    if pretrained:
        # Optimizer
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']

        # Results
        if ckpt.get('training_results') is not None:
            with open(results_file, 'w') as file:
                file.write(ckpt['training_results'])  # write results.txt

        # Epochs
        start_epoch = ckpt['epoch'] + 1
        if opt.resume:
            assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (
                weights, epochs)
            shutil.copytree(wdir, wdir.parent /
                            f'weights_backup_epoch{start_epoch - 1}'
                            )  # save previous weights
        if epochs < start_epoch:
            logger.info(
                '%s has been trained for %g epochs. Fine-tuning for %g additional epochs.'
                % (weights, ckpt['epoch'], epochs))
            epochs += ckpt['epoch']  # finetune additional epochs

        del ckpt, state_dict

    # Image sizes
    gs = int(max(model.stride))  # grid size (max stride)
    imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size
                         ]  # verify imgsz are gs-multiples

    # DP mode
    if cuda and rank == -1 and torch.cuda.device_count() > 1:
        model = torch.nn.DataParallel(model)

    # SyncBatchNorm
    if opt.sync_bn and cuda and rank != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        logger.info('Using SyncBatchNorm()')

    # Exponential moving average
    ema = ModelEMA(model) if rank in [-1, 0] else None

    # DDP mode
    if cuda and rank != -1:
        model = DDP(model,
                    device_ids=[opt.local_rank],
                    output_device=opt.local_rank)

    # Trainloader
    dataloader, dataset = create_dataloader(train_path,
                                            imgsz,
                                            batch_size,
                                            gs,
                                            opt,
                                            hyp=hyp,
                                            augment=True,
                                            cache=opt.cache_images,
                                            rect=opt.rect,
                                            rank=rank,
                                            world_size=opt.world_size,
                                            workers=opt.workers)
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    nb = len(dataloader)  # number of batches
    assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (
        mlc, nc, opt.data, nc - 1)

    # Process 0
    if rank in [-1, 0]:
        ema.updates = start_epoch * nb // accumulate  # set EMA updates
        testloader = create_dataloader(test_path,
                                       imgsz_test,
                                       total_batch_size,
                                       gs,
                                       opt,
                                       hyp=hyp,
                                       augment=False,
                                       cache=opt.cache_images
                                       and not opt.notest,
                                       rect=True,
                                       rank=-1,
                                       world_size=opt.world_size,
                                       workers=opt.workers)[0]  # testloader

        if not opt.resume:
            labels = np.concatenate(dataset.labels, 0)
            c = torch.tensor(labels[:, 0])  # classes
            # cf = torch.bincount(c.long(), minlength=nc) + 1.  # frequency
            # model._initialize_biases(cf.to(device))
            plot_labels(labels, save_dir=log_dir)
            if tb_writer:
                # tb_writer.add_hparams(hyp, {})  # causes duplicate https://github.com/ultralytics/yolov5/pull/384
                tb_writer.add_histogram('classes', c, 0)

            # Anchors
            if not opt.noautoanchor:
                check_anchors(dataset,
                              model=model,
                              thr=hyp['anchor_t'],
                              imgsz=imgsz)

    # Model parameters
    hyp['cls'] *= nc / 80.  # scale coco-tuned hyp['cls'] to current dataset
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # iou loss ratio (obj_loss = 1.0 or iou)
    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(
        device)  # attach class weights
    model.names = names

    # Start training
    t0 = time.time()
    nw = max(round(hyp['warmup_epochs'] * nb),
             1e3)  # number of warmup iterations, max(3 epochs, 1k iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0
               )  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
    scheduler.last_epoch = start_epoch - 1  # do not move
    scaler = amp.GradScaler(enabled=cuda)
    logger.info('Image sizes %g train, %g test\n'
                'Using %g dataloader workers\nLogging results to %s\n'
                'Starting training for %g epochs...' %
                (imgsz, imgsz_test, dataloader.num_workers, log_dir, epochs))
    for epoch in range(
            start_epoch, epochs
    ):  # epoch ------------------------------------------------------------------
        model.train()

        # Update image weights (optional)
        if opt.image_weights:
            # Generate indices
            if rank in [-1, 0]:
                cw = model.class_weights.cpu().numpy() * (
                    1 - maps)**2  # class weights
                iw = labels_to_image_weights(dataset.labels,
                                             nc=nc,
                                             class_weights=cw)  # image weights
                dataset.indices = random.choices(
                    range(dataset.n), weights=iw,
                    k=dataset.n)  # rand weighted idx
            # Broadcast if DDP
            if rank != -1:
                indices = (torch.tensor(dataset.indices)
                           if rank == 0 else torch.zeros(dataset.n)).int()
                dist.broadcast(indices, 0)
                if rank != 0:
                    dataset.indices = indices.cpu().numpy()

        # Update mosaic border
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(4, device=device)  # mean losses
        if rank != -1:
            dataloader.sampler.set_epoch(epoch)
        pbar = enumerate(dataloader)
        logger.info(
            ('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls',
                                   'total', 'targets', 'img_size'))
        if rank in [-1, 0]:
            pbar = tqdm(pbar, total=nb)  # progress bar
        optimizer.zero_grad()
        for i, (
                imgs, targets, paths, _
        ) in pbar:  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float(
            ) / 255.0  # uint8 to float32, 0-255 to 0.0-1.0

            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                accumulate = max(
                    1,
                    np.interp(ni, xi, [1, nbs / total_batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(ni, xi, [
                        hyp['warmup_bias_lr'] if j == 2 else 0.0,
                        x['initial_lr'] * lf(epoch)
                    ])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(
                            ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5,
                                      imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]
                          ]  # new shape (stretched to gs-multiple)
                    imgs = F.interpolate(imgs,
                                         size=ns,
                                         mode='bilinear',
                                         align_corners=False)

            # Forward
            with amp.autocast(enabled=cuda):
                pred = model(imgs)  # forward
                loss, loss_items = compute_loss(
                    pred, targets.to(device),
                    model)  # loss scaled by batch_size
                if rank != -1:
                    loss *= opt.world_size  # gradient averaged between devices in DDP mode

            # Backward
            scaler.scale(loss).backward()

            # Optimize
            if ni % accumulate == 0:
                scaler.step(optimizer)  # optimizer.step
                scaler.update()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)

            # Print
            if rank in [-1, 0]:
                mloss = (mloss * i + loss_items) / (i + 1
                                                    )  # update mean losses
                mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9
                                 if torch.cuda.is_available() else 0)  # (GB)
                s = ('%10s' * 2 +
                     '%10.4g' * 6) % ('%g/%g' % (epoch, epochs - 1), mem,
                                      *mloss, targets.shape[0], imgs.shape[-1])
                pbar.set_description(s)

                # Plot
                if ni < 3:
                    f = str(log_dir / f'train_batch{ni}.jpg')  # filename
                    result = plot_images(images=imgs,
                                         targets=targets,
                                         paths=paths,
                                         fname=f)
                    # if tb_writer and result is not None:
                    # tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
                    # tb_writer.add_graph(model, imgs)  # add model to tensorboard

            # end batch ------------------------------------------------------------------------------------------------

        # Scheduler
        lr = [x['lr'] for x in optimizer.param_groups]  # for tensorboard
        scheduler.step()

        # DDP process 0 or single-GPU
        if rank in [-1, 0]:
            # mAP
            if ema:
                ema.update_attr(
                    model,
                    include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride'])
            final_epoch = epoch + 1 == epochs
            if not opt.notest or final_epoch:  # Calculate mAP
                results, maps, times = test.test(
                    opt.data,
                    batch_size=total_batch_size,
                    imgsz=imgsz_test,
                    model=ema.ema,
                    single_cls=opt.single_cls,
                    dataloader=testloader,
                    save_dir=log_dir,
                    plots=epoch == 0 or final_epoch)  # plot first and last

            # Write
            with open(results_file, 'a') as f:
                f.write(
                    s + '%10.4g' * 7 % results +
                    '\n')  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
            if len(opt.name) and opt.bucket:
                os.system('gsutil cp %s gs://%s/results/results%s.txt' %
                          (results_file, opt.bucket, opt.name))

            # Tensorboard
            if tb_writer:
                tags = [
                    'train/box_loss',
                    'train/obj_loss',
                    'train/cls_loss',  # train loss
                    'metrics/precision',
                    'metrics/recall',
                    'metrics/mAP_0.5',
                    'metrics/mAP_0.5:0.95',
                    'val/box_loss',
                    'val/obj_loss',
                    'val/cls_loss',  # val loss
                    'x/lr0',
                    'x/lr1',
                    'x/lr2'
                ]  # params
                for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
                    tb_writer.add_scalar(tag, x, epoch)

            # Update best mAP
            fi = fitness(np.array(results).reshape(
                1, -1))  # weighted combination of [P, R, [email protected], [email protected]]
            if fi > best_fitness:
                best_fitness = fi

            # Save model
            save = (not opt.nosave) or (final_epoch and not opt.evolve)
            if save:
                with open(results_file, 'r') as f:  # create checkpoint
                    ckpt = {
                        'epoch':
                        epoch,
                        'best_fitness':
                        best_fitness,
                        'training_results':
                        f.read(),
                        'model':
                        ema.ema,
                        'optimizer':
                        None if final_epoch else optimizer.state_dict()
                    }

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                del ckpt
        # end epoch ----------------------------------------------------------------------------------------------------
    # end training

    if rank in [-1, 0]:
        # Strip optimizers
        n = opt.name if opt.name.isnumeric() else ''
        fresults, flast, fbest = log_dir / f'results{n}.txt', wdir / f'last{n}.pt', wdir / f'best{n}.pt'
        for f1, f2 in zip([wdir / 'last.pt', wdir / 'best.pt', results_file],
                          [flast, fbest, fresults]):
            if os.path.exists(f1):
                os.rename(f1, f2)  # rename
                if str(f2).endswith('.pt'):  # is *.pt
                    strip_optimizer(f2)  # strip optimizer
                    os.system(
                        'gsutil cp %s gs://%s/weights' %
                        (f2, opt.bucket)) if opt.bucket else None  # upload
        # Finish
        if not opt.evolve:
            plot_results(save_dir=log_dir)  # save as results.png
        logger.info('%g epochs completed in %.3f hours.\n' %
                    (epoch - start_epoch + 1, (time.time() - t0) / 3600))

    dist.destroy_process_group() if rank not in [-1, 0] else None
    torch.cuda.empty_cache()
    return results
Ejemplo n.º 9
0
def train(hyp, opt, device, tb_writer=None):
    logger.info(colorstr('hyperparameters: ') + ', '.join(f'{k}={v}' for k, v in hyp.items()))
    save_dir, epochs, batch_size, total_batch_size, weights, rank = \
        Path(opt.save_dir), opt.epochs, opt.batch_size, opt.total_batch_size, opt.weights, opt.global_rank

    # Directories
    wdir = save_dir / 'weights'
    wdir.mkdir(parents=True, exist_ok=True)  # make dir
    last = wdir / 'last.pt'
    best = wdir / 'best.pt'
    results_file = save_dir / 'results.txt'

    # Save run settings
    with open(save_dir / 'hyp.yaml', 'w') as f:
        yaml.dump(hyp, f, sort_keys=False)
    with open(save_dir / 'opt.yaml', 'w') as f:
        yaml.dump(vars(opt), f, sort_keys=False)

    # Configure
    plots = not opt.evolve  # create plots
    cuda = device.type != 'cpu'
    init_seeds(2 + rank)
    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.SafeLoader)  # data dict
    is_coco = opt.data.endswith('coco.yaml')

    # Logging- Doing this before checking the dataset. Might update data_dict
    loggers = {'wandb': None}  # loggers dict
    if rank in [-1, 0]:
        opt.hyp = hyp  # add hyperparameters
        run_id = torch.load(weights).get('wandb_id') if weights.endswith('.pt') and os.path.isfile(weights) else None
        wandb_logger = WandbLogger(opt, Path(opt.save_dir).stem, run_id, data_dict)
        loggers['wandb'] = wandb_logger.wandb
        data_dict = wandb_logger.data_dict
        if wandb_logger.wandb:
            weights, epochs, hyp = opt.weights, opt.epochs, opt.hyp  # WandbLogger might update weights, epochs if resuming

    nc = 1 if opt.single_cls else int(data_dict['nc'])  # number of classes
    names = ['item'] if opt.single_cls and len(data_dict['names']) != 1 else data_dict['names']  # class names
    assert len(names) == nc, '%g names found for nc=%g dataset in %s' % (len(names), nc, opt.data)  # check

    # Model
    pretrained = weights.endswith('.pt')
    if pretrained:
        with torch_distributed_zero_first(rank):
            attempt_download(weights)  # download if not found locally
        ckpt = torch.load(weights, map_location=device)  # load checkpoint
        model = Model(opt.cfg or ckpt['model'].yaml, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create
        exclude = ['anchor'] if (opt.cfg or hyp.get('anchors')) and not opt.resume else []  # exclude keys
        state_dict = ckpt['model'].float().state_dict()  # to FP32
        state_dict = intersect_dicts(state_dict, model.state_dict(), exclude=exclude)  # intersect
        model.load_state_dict(state_dict, strict=False)  # load
        logger.info('Transferred %g/%g items from %s' % (len(state_dict), len(model.state_dict()), weights))  # report
    else:
        model = Model(opt.cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create
    with torch_distributed_zero_first(rank):
        check_dataset(data_dict)  # check
    train_path = data_dict['train']
    test_path = data_dict['val']

    # Freeze
    freeze = []  # parameter names to freeze (full or partial)
    for k, v in model.named_parameters():
        v.requires_grad = True  # train all layers
        if any(x in k for x in freeze):
            print('freezing %s' % k)
            v.requires_grad = False

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(round(nbs / total_batch_size), 1)  # accumulate loss before optimizing
    hyp['weight_decay'] *= total_batch_size * accumulate / nbs  # scale weight_decay
    logger.info(f"Scaled weight_decay = {hyp['weight_decay']}")

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_modules():
        if hasattr(v, 'bias') and isinstance(v.bias, nn.Parameter):
            pg2.append(v.bias)  # biases
        if isinstance(v, nn.BatchNorm2d):
            pg0.append(v.weight)  # no decay
        elif hasattr(v, 'weight') and isinstance(v.weight, nn.Parameter):
            pg1.append(v.weight)  # apply decay

    if opt.adam:
        optimizer = optim.Adam(pg0, lr=hyp['lr0'], betas=(hyp['momentum'], 0.999))  # adjust beta1 to momentum
    else:
        optimizer = optim.SGD(pg0, lr=hyp['lr0'], momentum=hyp['momentum'], nesterov=True)

    optimizer.add_param_group({'params': pg1, 'weight_decay': hyp['weight_decay']})  # add pg1 with weight_decay
    optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
    logger.info('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
    del pg0, pg1, pg2

    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
    if opt.linear_lr:
        lf = lambda x: (1 - x / (epochs - 1)) * (1.0 - hyp['lrf']) + hyp['lrf']  # linear
    else:
        lf = one_cycle(1, hyp['lrf'], epochs)  # cosine 1->hyp['lrf']
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    # plot_lr_scheduler(optimizer, scheduler, epochs)

    # EMA
    ema = ModelEMA(model) if rank in [-1, 0] else None

    # Resume
    start_epoch, best_fitness = 0, 0.0
    if pretrained:
        # Optimizer
        if ckpt['optimizer'] is not None:
            optimizer.load_state_dict(ckpt['optimizer'])
            best_fitness = ckpt['best_fitness']

        # EMA
        if ema and ckpt.get('ema'):
            ema.ema.load_state_dict(ckpt['ema'].float().state_dict())
            ema.updates = ckpt['updates']

        # Results
        if ckpt.get('training_results') is not None:
            results_file.write_text(ckpt['training_results'])  # write results.txt

        # Epochs
        start_epoch = ckpt['epoch'] + 1
        if opt.resume:
            assert start_epoch > 0, '%s training to %g epochs is finished, nothing to resume.' % (weights, epochs)
        if epochs < start_epoch:
            logger.info('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
                        (weights, ckpt['epoch'], epochs))
            epochs += ckpt['epoch']  # finetune additional epochs

        del ckpt, state_dict

    # Image sizes
    gs = max(int(model.stride.max()), 32)  # grid size (max stride)
    nl = model.model[-1].nl  # number of detection layers (used for scaling hyp['obj'])
    imgsz, imgsz_test = [check_img_size(x, gs) for x in opt.img_size]  # verify imgsz are gs-multiples

    # DP mode
    if cuda and rank == -1 and torch.cuda.device_count() > 1:
        model = torch.nn.DataParallel(model)

    # SyncBatchNorm
    if opt.sync_bn and cuda and rank != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        logger.info('Using SyncBatchNorm()')

    # Trainloader
    dataloader, dataset = create_dataloader(train_path, imgsz, batch_size, gs, opt,
                                            hyp=hyp, augment=True, cache=opt.cache_images, rect=opt.rect, rank=rank,
                                            world_size=opt.world_size, workers=opt.workers,
                                            image_weights=opt.image_weights, quad=opt.quad, prefix=colorstr('train: '))
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    nb = len(dataloader)  # number of batches
    assert mlc < nc, 'Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g' % (mlc, nc, opt.data, nc - 1)

    # Process 0
    if rank in [-1, 0]:
        testloader = create_dataloader(test_path, imgsz_test, batch_size * 2, gs, opt,  # testloader
                                       hyp=hyp, cache=opt.cache_images and not opt.notest, rect=True, rank=-1,
                                       world_size=opt.world_size, workers=opt.workers,
                                       pad=0.5, prefix=colorstr('val: '))[0]

        if not opt.resume:
            labels = np.concatenate(dataset.labels, 0)
            c = torch.tensor(labels[:, 0])  # classes
            # cf = torch.bincount(c.long(), minlength=nc) + 1.  # frequency
            # model._initialize_biases(cf.to(device))
            if plots:
                plot_labels(labels, names, save_dir, loggers)
                if tb_writer:
                    tb_writer.add_histogram('classes', c, 0)

            # Anchors
            if not opt.noautoanchor:
                check_anchors(dataset, model=model, thr=hyp['anchor_t'], imgsz=imgsz)
            model.half().float()  # pre-reduce anchor precision

    # DDP mode
    if cuda and rank != -1:
        model = DDP(model, device_ids=[opt.local_rank], output_device=opt.local_rank)

    # Model parameters
    hyp['box'] *= 3. / nl  # scale to layers
    hyp['cls'] *= nc / 80. * 3. / nl  # scale to classes and layers
    hyp['obj'] *= (imgsz / 640) ** 2 * 3. / nl  # scale to image size and layers
    hyp['label_smoothing'] = opt.label_smoothing
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # iou loss ratio (obj_loss = 1.0 or iou)
    model.class_weights = labels_to_class_weights(dataset.labels, nc).to(device) * nc  # attach class weights
    model.names = names

    # Start training
    t0 = time.time()
    nw = max(round(hyp['warmup_epochs'] * nb), 1000)  # number of warmup iterations, max(3 epochs, 1k iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0)  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
    scheduler.last_epoch = start_epoch - 1  # do not move
    scaler = amp.GradScaler(enabled=cuda)
    compute_loss = ComputeLoss(model)  # init loss class
    logger.info(f'Image sizes {imgsz} train, {imgsz_test} test\n'
                f'Using {dataloader.num_workers} dataloader workers\n'
                f'Logging results to {save_dir}\n'
                f'Starting training for {epochs} epochs...')
    for epoch in range(start_epoch, epochs):  # epoch ------------------------------------------------------------------
        model.train()

        # Update image weights (optional)
        if opt.image_weights:
            # Generate indices
            if rank in [-1, 0]:
                cw = model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc  # class weights
                iw = labels_to_image_weights(dataset.labels, nc=nc, class_weights=cw)  # image weights
                dataset.indices = random.choices(range(dataset.n), weights=iw, k=dataset.n)  # rand weighted idx
            # Broadcast if DDP
            if rank != -1:
                indices = (torch.tensor(dataset.indices) if rank == 0 else torch.zeros(dataset.n)).int()
                dist.broadcast(indices, 0)
                if rank != 0:
                    dataset.indices = indices.cpu().numpy()

        # Update mosaic border
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(4, device=device)  # mean losses
        if rank != -1:
            dataloader.sampler.set_epoch(epoch)
        pbar = enumerate(dataloader)
        logger.info(('\n' + '%10s' * 8) % ('Epoch', 'gpu_mem', 'box', 'obj', 'cls', 'total', 'labels', 'img_size'))
        if rank in [-1, 0]:
            pbar = tqdm(pbar, total=nb)  # progress bar
        optimizer.zero_grad()
        for i, (imgs, targets, paths, _) in pbar:  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = imgs.to(device, non_blocking=True).float() / 255.0  # uint8 to float32, 0-255 to 0.0-1.0

            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                accumulate = max(1, np.interp(ni, xi, [1, nbs / total_batch_size]).round())
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x['lr'] = np.interp(ni, xi, [hyp['warmup_bias_lr'] if j == 2 else 0.0, x['initial_lr'] * lf(epoch)])
                    if 'momentum' in x:
                        x['momentum'] = np.interp(ni, xi, [hyp['warmup_momentum'], hyp['momentum']])

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]]  # new shape (stretched to gs-multiple)
                    imgs = F.interpolate(imgs, size=ns, mode='bilinear', align_corners=False)

            # Forward
            with amp.autocast(enabled=cuda):
                pred = model(imgs)  # forward
                loss, loss_items = compute_loss(pred, targets.to(device))  # loss scaled by batch_size
                if rank != -1:
                    loss *= opt.world_size  # gradient averaged between devices in DDP mode
                if opt.quad:
                    loss *= 4.

            # Backward
            scaler.scale(loss).backward()

            # Optimize
            if ni % accumulate == 0:
                scaler.step(optimizer)  # optimizer.step
                scaler.update()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)

            # Print
            if rank in [-1, 0]:
                mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses
                mem = '%.3gG' % (torch.cuda.memory_reserved() / 1E9 if torch.cuda.is_available() else 0)  # (GB)
                s = ('%10s' * 2 + '%10.4g' * 6) % (
                    '%g/%g' % (epoch, epochs - 1), mem, *mloss, targets.shape[0], imgs.shape[-1])
                pbar.set_description(s)

                # Plot
                if plots and ni < 3:
                    f = save_dir / f'train_batch{ni}.jpg'  # filename
                    Thread(target=plot_images, args=(imgs, targets, paths, f), daemon=True).start()
                    # if tb_writer:
                    #     tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
                    #     tb_writer.add_graph(model, imgs)  # add model to tensorboard
                elif plots and ni == 10 and wandb_logger.wandb:
                    wandb_logger.log({"Mosaics": [wandb_logger.wandb.Image(str(x), caption=x.name) for x in
                                                  save_dir.glob('train*.jpg') if x.exists()]})

            # end batch ------------------------------------------------------------------------------------------------
        # end epoch ----------------------------------------------------------------------------------------------------

        # Scheduler
        lr = [x['lr'] for x in optimizer.param_groups]  # for tensorboard
        scheduler.step()

        # DDP process 0 or single-GPU
        if rank in [-1, 0]:
            # mAP
            ema.update_attr(model, include=['yaml', 'nc', 'hyp', 'gr', 'names', 'stride', 'class_weights'])
            final_epoch = epoch + 1 == epochs
            if not opt.notest or final_epoch:  # Calculate mAP
                wandb_logger.current_epoch = epoch + 1
                results, maps, times = test.test(data_dict,
                                                 batch_size=batch_size * 2,
                                                 imgsz=imgsz_test,
                                                 model=ema.ema,
                                                 single_cls=opt.single_cls,
                                                 dataloader=testloader,
                                                 save_dir=save_dir,
                                                 verbose=nc < 50 and final_epoch,
                                                 plots=plots and final_epoch,
                                                 wandb_logger=wandb_logger,
                                                 compute_loss=compute_loss,
                                                 is_coco=is_coco)

            # Write
            with open(results_file, 'a') as f:
                f.write(s + '%10.4g' * 7 % results + '\n')  # append metrics, val_loss
            if len(opt.name) and opt.bucket:
                os.system('gsutil cp %s gs://%s/results/results%s.txt' % (results_file, opt.bucket, opt.name))

            # Log
            tags = ['train/box_loss', 'train/obj_loss', 'train/cls_loss',  # train loss
                    'metrics/precision', 'metrics/recall', 'metrics/mAP_0.5', 'metrics/mAP_0.5:0.95',
                    'val/box_loss', 'val/obj_loss', 'val/cls_loss',  # val loss
                    'x/lr0', 'x/lr1', 'x/lr2']  # params
            for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
                if tb_writer:
                    tb_writer.add_scalar(tag, x, epoch)  # tensorboard
                if wandb_logger.wandb:
                    wandb_logger.log({tag: x})  # W&B

            # Update best mAP
            fi = fitness(np.array(results).reshape(1, -1))  # weighted combination of [P, R, [email protected], [email protected]]
            if fi > best_fitness:
                best_fitness = fi
            wandb_logger.end_epoch(best_result=best_fitness == fi)

            # Save model
            if (not opt.nosave) or (final_epoch and not opt.evolve):  # if save
                ckpt = {'epoch': epoch,
                        'best_fitness': best_fitness,
                        'training_results': results_file.read_text(),
                        'model': deepcopy(model.module if is_parallel(model) else model).half(),
                        'ema': deepcopy(ema.ema).half(),
                        'updates': ema.updates,
                        'optimizer': optimizer.state_dict(),
                        'wandb_id': wandb_logger.wandb_run.id if wandb_logger.wandb else None}

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                if wandb_logger.wandb:
                    if ((epoch + 1) % opt.save_period == 0 and not final_epoch) and opt.save_period != -1:
                        wandb_logger.log_model(
                            last.parent, opt, epoch, fi, best_model=best_fitness == fi)
                del ckpt

        # end epoch ----------------------------------------------------------------------------------------------------
    # end training
    if rank in [-1, 0]:
        # Plots
        if plots:
            plot_results(save_dir=save_dir)  # save as results.png
            if wandb_logger.wandb:
                files = ['results.png', 'confusion_matrix.png', *[f'{x}_curve.png' for x in ('F1', 'PR', 'P', 'R')]]
                wandb_logger.log({"Results": [wandb_logger.wandb.Image(str(save_dir / f), caption=f) for f in files
                                              if (save_dir / f).exists()]})
        # Test best.pt
        logger.info('%g epochs completed in %.3f hours.\n' % (epoch - start_epoch + 1, (time.time() - t0) / 3600))
        if opt.data.endswith('coco.yaml') and nc == 80:  # if COCO
            for m in (last, best) if best.exists() else (last):  # speed, mAP tests
                results, _, _ = test.test(opt.data,
                                          batch_size=batch_size * 2,
                                          imgsz=imgsz_test,
                                          conf_thres=0.001,
                                          iou_thres=0.7,
                                          model=attempt_load(m, device).half(),
                                          single_cls=opt.single_cls,
                                          dataloader=testloader,
                                          save_dir=save_dir,
                                          save_json=True,
                                          plots=False,
                                          is_coco=is_coco)

        # Strip optimizers
        final = best if best.exists() else last  # final model
        for f in last, best:
            if f.exists():
                strip_optimizer(f)  # strip optimizers
        if opt.bucket:
            os.system(f'gsutil cp {final} gs://{opt.bucket}/weights')  # upload
        if wandb_logger.wandb and not opt.evolve:  # Log the stripped model
            wandb_logger.wandb.log_artifact(str(final), type='model',
                                            name='run_' + wandb_logger.wandb_run.id + '_model',
                                            aliases=['last', 'best', 'stripped'])
        wandb_logger.finish_run()
    else:
        dist.destroy_process_group()
    torch.cuda.empty_cache()
    return results
Ejemplo n.º 10
0
def train(hyp, opt, device, tb_writer=None, wandb=None):
    logger.info(f"Hyperparameters {hyp}")
    save_dir, epochs, batch_size, total_batch_size, weights, rank = (
        Path(opt.save_dir),
        opt.epochs,
        opt.batch_size,
        opt.total_batch_size,
        opt.weights,
        opt.global_rank,
    )

    # Directories
    wdir = save_dir / "weights"
    wdir.mkdir(parents=True, exist_ok=True)  # make dir
    last = wdir / "last.pt"
    best = wdir / "best.pt"
    results_file = save_dir / "results.txt"

    # Save run settings
    with open(save_dir / "hyp.yaml", "w") as f:
        yaml.dump(hyp, f, sort_keys=False)
    with open(save_dir / "opt.yaml", "w") as f:
        yaml.dump(vars(opt), f, sort_keys=False)

    # Configure
    plots = not opt.evolve  # create plots
    cuda = device.type != "cpu"
    init_seeds(2 + rank)
    with open(opt.data) as f:
        data_dict = yaml.load(f, Loader=yaml.FullLoader)  # data dict
    with torch_distributed_zero_first(rank):
        check_dataset(data_dict)  # check
    train_path = data_dict["train"]
    test_path = data_dict["val"]
    nc = 1 if opt.single_cls else int(data_dict["nc"])  # number of classes
    names = (
        ["item"]
        if opt.single_cls and len(data_dict["names"]) != 1
        else data_dict["names"]
    )  # class names
    assert len(names) == nc, "%g names found for nc=%g dataset in %s" % (
        len(names),
        nc,
        opt.data,
    )  # check

    # Model
    pretrained = weights.endswith(".pt")
    if pretrained:
        with torch_distributed_zero_first(rank):
            attempt_download(weights)  # download if not found locally
        # add yolov5 folder to system path
        here = Path(__file__).parent.absolute()
        yolov5_folder_dir = str(here)
        sys.path.insert(0, yolov5_folder_dir)
        # load checkpoint
        ckpt = torch.load(weights, map_location=device)
        # remove yolov5 folder from system path
        sys.path.remove(yolov5_folder_dir)
        if hyp.get("anchors"):
            ckpt["model"].yaml["anchors"] = round(hyp["anchors"])  # force autoanchor
        model = Model(opt.cfg or ckpt["model"].yaml, ch=3, nc=nc).to(device)  # create
        exclude = ["anchor"] if opt.cfg or hyp.get("anchors") else []  # exclude keys
        state_dict = ckpt["model"].float().state_dict()  # to FP32
        state_dict = intersect_dicts(
            state_dict, model.state_dict(), exclude=exclude
        )  # intersect
        model.load_state_dict(state_dict, strict=False)  # load
        logger.info(
            "Transferred %g/%g items from %s"
            % (len(state_dict), len(model.state_dict()), weights)
        )  # report
    else:
        model = Model(opt.cfg, ch=3, nc=nc, anchors=hyp.get('anchors')).to(device)  # create

    # Freeze
    freeze = []  # parameter names to freeze (full or partial)
    for k, v in model.named_parameters():
        v.requires_grad = True  # train all layers
        if any(x in k for x in freeze):
            print("freezing %s" % k)
            v.requires_grad = False

    # Optimizer
    nbs = 64  # nominal batch size
    accumulate = max(
        round(nbs / total_batch_size), 1
    )  # accumulate loss before optimizing
    hyp["weight_decay"] *= total_batch_size * accumulate / nbs  # scale weight_decay
    logger.info(f"Scaled weight_decay = {hyp['weight_decay']}")

    pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
    for k, v in model.named_modules():
        if hasattr(v, "bias") and isinstance(v.bias, nn.Parameter):
            pg2.append(v.bias)  # biases
        if isinstance(v, nn.BatchNorm2d):
            pg0.append(v.weight)  # no decay
        elif hasattr(v, "weight") and isinstance(v.weight, nn.Parameter):
            pg1.append(v.weight)  # apply decay

    if opt.adam:
        optimizer = optim.Adam(
            pg0, lr=hyp["lr0"], betas=(hyp["momentum"], 0.999)
        )  # adjust beta1 to momentum
    else:
        optimizer = optim.SGD(
            pg0, lr=hyp["lr0"], momentum=hyp["momentum"], nesterov=True
        )

    optimizer.add_param_group(
        {"params": pg1, "weight_decay": hyp["weight_decay"]}
    )  # add pg1 with weight_decay
    optimizer.add_param_group({"params": pg2})  # add pg2 (biases)
    logger.info(
        "Optimizer groups: %g .bias, %g conv.weight, %g other"
        % (len(pg2), len(pg1), len(pg0))
    )
    del pg0, pg1, pg2

    # Scheduler https://arxiv.org/pdf/1812.01187.pdf
    # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
    lf = one_cycle(1, hyp["lrf"], epochs)  # cosine 1->hyp['lrf']
    scheduler = lr_scheduler.LambdaLR(optimizer, lr_lambda=lf)
    # plot_lr_scheduler(optimizer, scheduler, epochs)

    # Logging
    if rank in [-1, 0] and wandb and wandb.run is None:
        opt.hyp = hyp  # add hyperparameters
        wandb_run = wandb.init(
            config=opt,
            resume="allow",
            project="YOLOv5" if opt.project == "runs/train" else Path(opt.project).stem,
            name=save_dir.stem,
            id=ckpt.get("wandb_id") if "ckpt" in locals() else None,
        )
    loggers = {"wandb": wandb}  # loggers dict

    # Resume
    start_epoch, best_fitness = 0, 0.0
    if pretrained:
        # Optimizer
        if ckpt["optimizer"] is not None:
            optimizer.load_state_dict(ckpt["optimizer"])
            best_fitness = ckpt["best_fitness"]

        # Results
        if ckpt.get("training_results") is not None:
            with open(results_file, "w") as file:
                file.write(ckpt["training_results"])  # write results.txt

        # Epochs
        start_epoch = ckpt["epoch"] + 1
        if opt.resume:
            assert (
                start_epoch > 0
            ), "%s training to %g epochs is finished, nothing to resume." % (
                weights,
                epochs,
            )
        if epochs < start_epoch:
            logger.info(
                "%s has been trained for %g epochs. Fine-tuning for %g additional epochs."
                % (weights, ckpt["epoch"], epochs)
            )
            epochs += ckpt["epoch"]  # finetune additional epochs

        del ckpt, state_dict

    # Image sizes
    gs = int(model.stride.max())  # grid size (max stride)
    nl = model.model[-1].nl  # number of detection layers (used for scaling hyp['obj'])
    imgsz, imgsz_test = [
        check_img_size(x, gs) for x in opt.img_size
    ]  # verify imgsz are gs-multiples

    # DP mode
    if cuda and rank == -1 and torch.cuda.device_count() > 1:
        model = torch.nn.DataParallel(model)

    # SyncBatchNorm
    if opt.sync_bn and cuda and rank != -1:
        model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model).to(device)
        logger.info("Using SyncBatchNorm()")

    # EMA
    ema = ModelEMA(model) if rank in [-1, 0] else None

    # DDP mode
    if cuda and rank != -1:
        model = DDP(model, device_ids=[opt.local_rank], output_device=opt.local_rank)

    # Trainloader
    dataloader, dataset = create_dataloader(
        train_path,
        imgsz,
        batch_size,
        gs,
        opt,
        hyp=hyp,
        augment=True,
        cache=opt.cache_images,
        rect=opt.rect,
        rank=rank,
        world_size=opt.world_size,
        workers=opt.workers,
        image_weights=opt.image_weights,
        quad=opt.quad,
    )
    mlc = np.concatenate(dataset.labels, 0)[:, 0].max()  # max label class
    nb = len(dataloader)  # number of batches
    assert (
        mlc < nc
    ), "Label class %g exceeds nc=%g in %s. Possible class labels are 0-%g" % (
        mlc,
        nc,
        opt.data,
        nc - 1,
    )

    # Process 0
    if rank in [-1, 0]:
        ema.updates = start_epoch * nb // accumulate  # set EMA updates
        testloader = create_dataloader(
            test_path,
            imgsz_test,
            total_batch_size,
            gs,
            opt,  # testloader
            hyp=hyp,
            cache=opt.cache_images and not opt.notest,
            rect=True,
            rank=-1,
            world_size=opt.world_size,
            workers=opt.workers,
            pad=0.5,
        )[0]

        if not opt.resume:
            labels = np.concatenate(dataset.labels, 0)
            c = torch.tensor(labels[:, 0])  # classes
            # cf = torch.bincount(c.long(), minlength=nc) + 1.  # frequency
            # model._initialize_biases(cf.to(device))
            if plots:
                plot_labels(labels, save_dir, loggers)
                if tb_writer:
                    tb_writer.add_histogram("classes", c, 0)

            # Anchors
            if not opt.noautoanchor:
                check_anchors(dataset, model=model, thr=hyp["anchor_t"], imgsz=imgsz)

    # Model parameters
    hyp["cls"] *= nc / 80.0  # scale hyp['cls'] to class count
    hyp["obj"] *= (
        imgsz ** 2 / 640.0 ** 2 * 3.0 / nl
    )  # scale hyp['obj'] to image size and output layers
    model.nc = nc  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # iou loss ratio (obj_loss = 1.0 or iou)
    model.class_weights = (
        labels_to_class_weights(dataset.labels, nc).to(device) * nc
    )  # attach class weights
    model.names = names

    # Start training
    t0 = time.time()
    nw = max(
        round(hyp["warmup_epochs"] * nb), 1000
    )  # number of warmup iterations, max(3 epochs, 1k iterations)
    # nw = min(nw, (epochs - start_epoch) / 2 * nb)  # limit warmup to < 1/2 of training
    maps = np.zeros(nc)  # mAP per class
    results = (0, 0, 0, 0, 0, 0, 0)  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
    scheduler.last_epoch = start_epoch - 1  # do not move
    scaler = amp.GradScaler(enabled=cuda)
    logger.info(
        "Image sizes %g train, %g test\n"
        "Using %g dataloader workers\nLogging results to %s\n"
        "Starting training for %g epochs..."
        % (imgsz, imgsz_test, dataloader.num_workers, save_dir, epochs)
    )
    for epoch in range(
        start_epoch, epochs
    ):  # epoch ------------------------------------------------------------------
        model.train()

        # Update image weights (optional)
        if opt.image_weights:
            # Generate indices
            if rank in [-1, 0]:
                cw = (
                    model.class_weights.cpu().numpy() * (1 - maps) ** 2 / nc
                )  # class weights
                iw = labels_to_image_weights(
                    dataset.labels, nc=nc, class_weights=cw
                )  # image weights
                dataset.indices = random.choices(
                    range(dataset.n), weights=iw, k=dataset.n
                )  # rand weighted idx
            # Broadcast if DDP
            if rank != -1:
                indices = (
                    torch.tensor(dataset.indices)
                    if rank == 0
                    else torch.zeros(dataset.n)
                ).int()
                dist.broadcast(indices, 0)
                if rank != 0:
                    dataset.indices = indices.cpu().numpy()

        # Update mosaic border
        # b = int(random.uniform(0.25 * imgsz, 0.75 * imgsz + gs) // gs * gs)
        # dataset.mosaic_border = [b - imgsz, -b]  # height, width borders

        mloss = torch.zeros(4, device=device)  # mean losses
        if rank != -1:
            dataloader.sampler.set_epoch(epoch)
        pbar = enumerate(dataloader)
        logger.info(
            ("\n" + "%10s" * 8)
            % ("Epoch", "gpu_mem", "box", "obj", "cls", "total", "targets", "img_size")
        )
        if rank in [-1, 0]:
            pbar = tqdm(pbar, total=nb)  # progress bar
        optimizer.zero_grad()
        for i, (
            imgs,
            targets,
            paths,
            _,
        ) in (
            pbar
        ):  # batch -------------------------------------------------------------
            ni = i + nb * epoch  # number integrated batches (since train start)
            imgs = (
                imgs.to(device, non_blocking=True).float() / 255.0
            )  # uint8 to float32, 0-255 to 0.0-1.0

            # Warmup
            if ni <= nw:
                xi = [0, nw]  # x interp
                # model.gr = np.interp(ni, xi, [0.0, 1.0])  # iou loss ratio (obj_loss = 1.0 or iou)
                accumulate = max(
                    1, np.interp(ni, xi, [1, nbs / total_batch_size]).round()
                )
                for j, x in enumerate(optimizer.param_groups):
                    # bias lr falls from 0.1 to lr0, all other lrs rise from 0.0 to lr0
                    x["lr"] = np.interp(
                        ni,
                        xi,
                        [
                            hyp["warmup_bias_lr"] if j == 2 else 0.0,
                            x["initial_lr"] * lf(epoch),
                        ],
                    )
                    if "momentum" in x:
                        x["momentum"] = np.interp(
                            ni, xi, [hyp["warmup_momentum"], hyp["momentum"]]
                        )

            # Multi-scale
            if opt.multi_scale:
                sz = random.randrange(imgsz * 0.5, imgsz * 1.5 + gs) // gs * gs  # size
                sf = sz / max(imgs.shape[2:])  # scale factor
                if sf != 1:
                    ns = [
                        math.ceil(x * sf / gs) * gs for x in imgs.shape[2:]
                    ]  # new shape (stretched to gs-multiple)
                    imgs = F.interpolate(
                        imgs, size=ns, mode="bilinear", align_corners=False
                    )

            # Forward
            with amp.autocast(enabled=cuda):
                pred = model(imgs)  # forward
                loss, loss_items = compute_loss(
                    pred, targets.to(device), model
                )  # loss scaled by batch_size
                if rank != -1:
                    loss *= (
                        opt.world_size
                    )  # gradient averaged between devices in DDP mode
                if opt.quad:
                    loss *= 4.0

            # Backward
            scaler.scale(loss).backward()

            # Optimize
            if ni % accumulate == 0:
                scaler.step(optimizer)  # optimizer.step
                scaler.update()
                optimizer.zero_grad()
                if ema:
                    ema.update(model)

            # Print
            if rank in [-1, 0]:
                mloss = (mloss * i + loss_items) / (i + 1)  # update mean losses
                mem = "%.3gG" % (
                    torch.cuda.memory_reserved() / 1e9
                    if torch.cuda.is_available()
                    else 0
                )  # (GB)
                s = ("%10s" * 2 + "%10.4g" * 6) % (
                    "%g/%g" % (epoch, epochs - 1),
                    mem,
                    *mloss,
                    targets.shape[0],
                    imgs.shape[-1],
                )
                pbar.set_description(s)

                # Plot
                if plots and ni < 3:
                    f = save_dir / f"train_batch{ni}.jpg"  # filename
                    Thread(
                        target=plot_images, args=(imgs, targets, paths, f), daemon=True
                    ).start()
                    # if tb_writer:
                    #     tb_writer.add_image(f, result, dataformats='HWC', global_step=epoch)
                    #     tb_writer.add_graph(model, imgs)  # add model to tensorboard
                elif plots and ni == 3 and wandb:
                    wandb.log(
                        {
                            "Mosaics": [
                                wandb.Image(str(x), caption=x.name)
                                for x in save_dir.glob("train*.jpg")
                            ]
                        }
                    )

            # end batch ------------------------------------------------------------------------------------------------
        # end epoch ----------------------------------------------------------------------------------------------------

        # Scheduler
        lr = [x["lr"] for x in optimizer.param_groups]  # for tensorboard
        scheduler.step()

        # DDP process 0 or single-GPU
        if rank in [-1, 0]:
            # mAP
            if ema:
                ema.update_attr(
                    model,
                    include=[
                        "yaml",
                        "nc",
                        "hyp",
                        "gr",
                        "names",
                        "stride",
                        "class_weights",
                    ],
                )
            final_epoch = epoch + 1 == epochs
            if not opt.notest or final_epoch:  # Calculate mAP
                results, maps, times = test(
                    data=opt.data,
                    batch_size=total_batch_size,
                    image_size=imgsz_test,
                    model=ema.ema,
                    single_cls=opt.single_cls,
                    dataloader=testloader,
                    save_dir=save_dir,
                    plots=plots and final_epoch,
                    log_imgs=opt.log_imgs if wandb else 0,
                )

            # Write
            with open(results_file, "a") as f:
                f.write(
                    s + "%10.4g" * 7 % results + "\n"
                )  # P, R, [email protected], [email protected], val_loss(box, obj, cls)
            if len(opt.name) and opt.bucket:
                os.system(
                    "gsutil cp %s gs://%s/results/results%s.txt"
                    % (results_file, opt.bucket, opt.name)
                )

            # Log
            tags = [
                "train/box_loss",
                "train/obj_loss",
                "train/cls_loss",  # train loss
                "metrics/precision",
                "metrics/recall",
                "metrics/mAP_0.5",
                "metrics/mAP_0.5:0.95",
                "val/box_loss",
                "val/obj_loss",
                "val/cls_loss",  # val loss
                "x/lr0",
                "x/lr1",
                "x/lr2",
            ]  # params
            for x, tag in zip(list(mloss[:-1]) + list(results) + lr, tags):
                if tb_writer:
                    tb_writer.add_scalar(tag, x, epoch)  # tensorboard
                if wandb:
                    wandb.log({tag: x})  # W&B

            # Update best mAP
            fi = fitness(
                np.array(results).reshape(1, -1)
            )  # weighted combination of [P, R, [email protected], [email protected]]
            if fi > best_fitness:
                best_fitness = fi

            # Save model
            save = (not opt.nosave) or (final_epoch and not opt.evolve)
            if save:
                with open(results_file, "r") as f:  # create checkpoint
                    ckpt = {
                        "epoch": epoch,
                        "best_fitness": best_fitness,
                        "training_results": f.read(),
                        "model": ema.ema,
                        "optimizer": None if final_epoch else optimizer.state_dict(),
                        "wandb_id": wandb_run.id if wandb else None,
                    }

                # Save last, best and delete
                torch.save(ckpt, last)
                if best_fitness == fi:
                    torch.save(ckpt, best)
                del ckpt
        # end epoch ----------------------------------------------------------------------------------------------------
    # end training

    if rank in [-1, 0]:
        # Strip optimizers
        final = best if best.exists() else last  # final model
        for f in [last, best]:
            if f.exists():
                strip_optimizer(f)  # strip optimizers
        if opt.bucket:
            os.system(f"gsutil cp {final} gs://{opt.bucket}/weights")  # upload

        # Plots
        if plots:
            plot_results(save_dir=save_dir)  # save as results.png
            if wandb:
                files = [
                    "results.png",
                    "precision_recall_curve.png",
                    "confusion_matrix.png",
                ]
                wandb.log(
                    {
                        "Results": [
                            wandb.Image(str(save_dir / f), caption=f)
                            for f in files
                            if (save_dir / f).exists()
                        ]
                    }
                )
                if opt.log_artifacts:
                    wandb.log_artifact(
                        artifact_or_path=str(final), type="model", name=save_dir.stem
                    )

        # Test best.pt
        logger.info(
            "%g epochs completed in %.3f hours.\n"
            % (epoch - start_epoch + 1, (time.time() - t0) / 3600)
        )
        if opt.data.endswith("coco.yaml") and nc == 80:  # if COCO
            for conf, iou, save_json in (
                [0.25, 0.45, False],
                [0.001, 0.65, True],
            ):  # speed, mAP tests
                results, _, _ = test(
                    data=opt.data,
                    batch_size=total_batch_size,
                    image_size=imgsz_test,
                    conf_thres=conf,
                    iou_thres=iou,
                    model=attempt_load(final, device).half(),
                    single_cls=opt.single_cls,
                    dataloader=testloader,
                    save_dir=save_dir,
                    save_json=save_json,
                    plots=False,
                )

    else:
        dist.destroy_process_group()

    wandb.run.finish() if wandb and wandb.run else None
    torch.cuda.empty_cache()
    return results
Ejemplo n.º 11
0
    def detect(self, Image=None):
        out, source, weights, view_img, save_txt, imgsz = \
            self.output, self.source, self.weights, self.view_img, self.save_txt, self.img_size
        webcam = source == '0' or source.startswith(
            'rtsp') or source.startswith('http') or source.endswith('.txt')

        # Initialize
        device = torch_utils.select_device(self.device)
        # if os.path.exists(out):
        #     shutil.rmtree(out)  # delete output folder
        # os.makedirs(out)  # make new output folder
        half = device.type != 'cpu'  # half precision only supported on CUDA

        # Load model
        google_utils.attempt_download(weights)
        model = torch.load(
            weights, map_location=device)['model'].float()  # load to FP32
        # torch.save(torch.load(weights, map_location=device), weights)  # update model if SourceChangeWarning
        # model.fuse()
        model.to(device).eval()
        if half:
            model.half()  # to FP16

        # Second-stage classifier
        classify = False
        if classify:
            modelc = torch_utils.load_classifier(name='resnet101',
                                                 n=2)  # initialize
            modelc.load_state_dict(
                torch.load('weights/resnet101.pt',
                           map_location=device)['model'])  # load weights
            modelc.to(device).eval()

        # Set Dataloader
        vid_path, vid_writer = None, None
        if webcam:
            view_img = True
            cudnn.benchmark = True  # set True to speed up constant image size inference
            dataset = LoadStreams(source, img_size=imgsz)
        else:
            save_img = True
            dataset = LoadImages(source, img_size=imgsz)

        # Get names and colors
        names = model.module.names if hasattr(model, 'module') else model.names
        colors = [[random.randint(0, 255) for _ in range(3)]
                  for _ in range(len(names))]

        # Run inference
        t0 = time.time()

        # img = torch.zeros((1, 3, imgsz, imgsz), device=device)  # init img

        im0s = np.frombuffer(Image.data, dtype=np.uint8).reshape(
            Image.height, Image.width,
            -1).astype('float32')  # Added by Prasanth Suresh
        # # run once
        # _ = model(img.half() if half else img) if device.type != 'cpu' else None

        img = letterbox(im0s, new_shape=imgsz)[0]
        img = img[:, :, ::-1].transpose(2, 0, 1)
        img = np.ascontiguousarray(img)

        # # for path, img, im0s, vid_cap in dataset:
        vid_cap = None
        path = 'img.jpg'
        img = torch.from_numpy(img).to(device)
        img = img.half() if half else img.float()  # uint8 to fp16/32
        img /= 255.0  # 0 - 255 to 0.0 - 1.0
        if img.ndimension() == 3:
            img = img.unsqueeze(0)

        # Inference
        t1 = torch_utils.time_synchronized()
        pred = model(img, augment=self.augment)[0]

        # Apply NMS
        pred = non_max_suppression(pred,
                                   self.conf_thres,
                                   self.iou_thres,
                                   classes=self.classes,
                                   agnostic=self.agnostic_nms)
        t2 = torch_utils.time_synchronized()

        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

        # print('**** pred: ',pred)
        ''' Sorting the bounding boxes according to ascending x values '''
        if pred[0] != None:
            pred[0] = pred[0].cpu().numpy()
            pred[0] = pred[0][pred[0][:, 0].argsort()]
            pred[0] = torch.from_numpy(pred[0])
            print('**** Sorted pred: \n', pred)
        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0 = path[i], '%g: ' % i, im0s[i].copy()
            else:
                p, s, im0 = path, '', im0s

            if det != None:
                self.bounding_boxes.append(det)

            save_path = str(Path(out) / Path(p).name)
            s += '%gx%g ' % img.shape[2:]  # print string
            #  normalization gain whwh
            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]
            if det is not None and len(det):
                # Rescale boxes from img_size to im0s size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                          im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += '%g %ss, ' % (n, names[int(c)])  # add to string

                # Write results
                minx = 0
                miny = 0
                maxx = 0
                maxy = 0

                for *xyxy, conf, cls in det:

                    tlx, tly, brx, bry = int(xyxy[0]), int(xyxy[1]), int(
                        xyxy[2]), int(xyxy[3])
                    if tlx < minx:
                        minx = tlx
                    if tly < miny:
                        miny = tly
                    if bry > maxy:
                        maxy = bry
                    if brx > maxx:
                        maxx = brx  # crop_img = img[y:y+h, x:x+w]

                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) /
                                gn).view(-1).tolist()  # normalized xywh
                        with open(save_path[:save_path.rfind('.')] + '.txt',
                                  'a') as file:
                            file.write(('%g ' * 5 + '\n') %
                                       (cls, *xywh))  # label format

                    if save_img or view_img:  # Add bbox to image
                        label = '%s %.2f' % (names[int(cls)], conf)
                        plot_one_box(xyxy,
                                     im0,
                                     label=label,
                                     color=colors[int(cls)],
                                     line_thickness=3)

            # Stream results
            if view_img:
                cv2.imshow(p, im0)
                if cv2.waitKey(1) == ord('q'):  # q to quit
                    raise StopIteration

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'images':
                    cv2.imwrite(save_path, im0)
                else:
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release(
                            )  # release previous video writer

                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        vid_writer = cv2.VideoWriter(
                            save_path, cv2.VideoWriter_fourcc(*self.fourcc),
                            fps, (w, h))
                    vid_writer.write(im0)

        if save_txt or save_img:
            print('Results saved to %s' % os.getcwd() + os.sep + out)
            if platform == 'darwin':  # MacOS
                os.system('open ' + save_path)
################################ END OF COMMENTED OUT FOR LOOP TO RESTOR INDENT LATER ################################

        print('Done. (%.3fs)' % (time.time() - t0))
        return self.bounding_boxes


# if __name__ == '__main__':
#     parser = argparse.ArgumentParser()
#     parser.add_argument('--weights', type=str,
#                         default='weights/yolov5s.pt', help='model.pt path')
#     # file/folder, 0 for webcam
#     parser.add_argument('--source', type=str,
#                         default='inference/images', help='source')
#     parser.add_argument('--output', type=str, default='inference/output',
#                         help='output folder')  # output folder
#     parser.add_argument('--img-size', type=int, default=640,
#                         help='inference size (pixels)')
#     parser.add_argument('--conf-thres', type=float,
#                         default=0.4, help='object confidence threshold')
#     parser.add_argument('--iou-thres', type=float,
#                         default=0.5, help='IOU threshold for NMS')
#     parser.add_argument('--fourcc', type=str, default='mp4v',
#                         help='output video codec (verify ffmpeg support)')
#     parser.add_argument('--device', default='',
#                         help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
#     parser.add_argument('--view-img', action='store_true',
#                         help='display results')
#     parser.add_argument('--save-txt', action='store_true',
#                         help='save results to *.txt')
#     parser.add_argument('--classes', nargs='+',
#                         type=int, help='filter by class')
#     parser.add_argument('--agnostic-nms', action='store_true',
#                         help='class-agnostic NMS')
#     parser.add_argument('--augment', action='store_true',
#                         help='augmented inference')
#     opt = parser.parse_args()
#     opt.img_size = check_img_size(opt.img_size)
#     print(opt)

#     with torch.no_grad():
#         detect()

# Update all models
# for opt.weights in ['yolov5s.pt', 'yolov5m.pt', 'yolov5l.pt', 'yolov5x.pt', 'yolov3-spp.pt']:
#    detect()
#    create_pretrained(opt.weights, opt.weights)
Ejemplo n.º 12
0
def model(
    backbone: YoloV5BackboneConfig,
    num_classes: int,
    img_size: int,  # must be multiple of 32
    device: Optional[torch.device] = None,
) -> nn.Module:
    model_name = backbone.model_name
    pretrained = backbone.pretrained

    device = (torch.device("cuda" if torch.cuda.is_available() else "cpu")
              if device is None else device)

    cfg_filepath = Path(yolov5.__file__).parent / f"models/{model_name}.yaml"
    if pretrained:
        weights_path = yolo_dir / f"{model_name}.pt"

        with open(Path(yolov5.__file__).parent /
                  "data/hyp.finetune.yaml") as f:
            hyp = yaml.load(f, Loader=yaml.SafeLoader)

        attempt_download(weights_path)  # download if not found locally
        sys.path.insert(0, str(Path(yolov5.__file__).parent))
        ckpt = torch.load(weights_path, map_location=device)  # load checkpoint
        sys.path.remove(str(Path(yolov5.__file__).parent))
        if hyp.get("anchors"):
            ckpt["model"].yaml["anchors"] = round(
                hyp["anchors"])  # force autoanchor
        model = Model(cfg_filepath or ckpt["model"].yaml, ch=3,
                      nc=num_classes).to(device)  # create
        exclude = []  # exclude keys
        state_dict = ckpt["model"].float().state_dict()  # to FP32
        state_dict = intersect_dicts(state_dict,
                                     model.state_dict(),
                                     exclude=exclude)  # intersect
        model.load_state_dict(state_dict, strict=False)  # load
    else:
        with open(Path(yolov5.__file__).parent / "data/hyp.scratch.yaml") as f:
            hyp = yaml.load(f, Loader=yaml.SafeLoader)

        model = Model(cfg_filepath,
                      ch=3,
                      nc=num_classes,
                      anchors=hyp.get("anchors")).to(device)  # create

    gs = int(model.stride.max())  # grid size (max stride)
    nl = model.model[
        -1].nl  # number of detection layers (used for scaling hyp['obj'])
    imgsz = check_img_size(img_size, gs)  # verify imgsz are gs-multiples

    hyp["box"] *= 3.0 / nl  # scale to layers
    hyp["cls"] *= num_classes / 80.0 * 3.0 / nl  # scale to classes and layers
    hyp["obj"] *= (imgsz / 640)**2 * 3.0 / nl  # scale to image size and layers
    model.nc = num_classes  # attach number of classes to model
    model.hyp = hyp  # attach hyperparameters to model
    model.gr = 1.0  # iou loss ratio (obj_loss = 1.0 or iou)

    def param_groups_fn(model: nn.Module) -> List[List[nn.Parameter]]:
        spp_index = [
            i + 2 for i, layer in enumerate(model.model.children())
            if layer._get_name() == "SPP"
        ][0]
        backbone = list(model.model.children())[:spp_index]
        neck = list(model.model.children())[spp_index:-1]
        head = list(model.model.children())[-1]

        layers = [
            nn.Sequential(*backbone),
            nn.Sequential(*neck),
            nn.Sequential(head)
        ]

        param_groups = [list(group.parameters()) for group in layers]
        check_all_model_params_in_groups2(model.model, param_groups)

        return param_groups

    model.param_groups = MethodType(param_groups_fn, model)

    return model
def myDetect(save_img=False,
             imgSize=416,
             outputPath="../output",
             inputSource='0',
             opt_names='',
             opt_cfg='cfg/yolov3-spp.cfg',
             currentWeights='weights/yolov3-spp.weights',
             opt_fourcc='mp4v',
             opt_half=False,
             opt_view_img=False,
             opt_save_txt=False,
             opt_device='',
             opt_agnostic_nms=False,
             opt_iou_thres=0.5,
             opt_conf_thres=0.3,
             opt_classes=0):
    img_size = (
        416, 256
    ) if ONNX_EXPORT else imgSize  # (320, 192) or (416, 256) or (608, 352) for (height, width)
    out, source, weights, half, view_img, save_txt = outputPath, inputSource, currentWeights, opt_half, opt_view_img, opt_save_txt
    webcam = source == '0' or source.startswith('rtsp') or source.startswith(
        'http') or source.endswith('.txt')

    # Initialize
    device = torch_utils.select_device(
        device='cpu' if ONNX_EXPORT else opt_device)
    if os.path.exists(out):
        shutil.rmtree(out)  # delete output folder
    os.makedirs(out)  # make new output folder

    # Initialize model
    model = Darknet(opt_cfg, img_size)

    # Load weights
    attempt_download(weights)
    if weights.endswith('.pt'):  # pytorch format
        model.load_state_dict(
            torch.load(weights, map_location=device)['model'])
    else:  # darknet format
        load_darknet_weights(model, weights)

    # Second-stage classifier
    classify = False
    if classify:
        modelc = torch_utils.load_classifier(name='resnet101',
                                             n=2)  # initialize
        modelc.load_state_dict(
            torch.load('weights/resnet101.pt',
                       map_location=device)['model'])  # load weights
        modelc.to(device).eval()

    # Fuse Conv2d + BatchNorm2d layers
    # model.fuse()

    # Eval mode
    model.to(device).eval()

    # Export mode
    if ONNX_EXPORT:
        img = torch.zeros((1, 3) + img_size)  # (1, 3, 320, 192)
        torch.onnx.export(model,
                          img,
                          'weights/export.onnx',
                          verbose=False,
                          opset_version=10)

        # Validate exported model
        import onnx
        model = onnx.load('weights/export.onnx')  # Load the ONNX model
        onnx.checker.check_model(model)  # Check that the IR is well formed
        print(onnx.helper.printable_graph(
            model.graph))  # Print a human readable representation of the graph
        return

    # Half precision
    half = half and device.type != 'cpu'  # half precision only supported on CUDA
    if half:
        model.half()

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = True
        torch.backends.cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=img_size, half=half)
    else:
        save_img = True
        dataset = LoadImages(source, img_size=img_size, half=half)

    # Get names and colors
    names = load_classes(opt_names)
    # print("names",names)
    colors = [[random.randint(0, 255) for _ in range(3)]
              for _ in range(len(names))]

    ###   自定义内容
    datium = {"hat": 0, "person": 0}
    ###   自定义内容

    # Run inference
    t0 = time.time()
    for path, img, im0s, vid_cap in dataset:
        t = time.time()

        # Get detections
        img = torch.from_numpy(img).to(device)
        if img.ndimension() == 3:
            img = img.unsqueeze(0)
        pred = model(img)[0]

        if opt_half:
            pred = pred.float()

        # Apply NMS
        pred = non_max_suppression(pred,
                                   opt_conf_thres,
                                   opt_iou_thres,
                                   classes=opt_classes,
                                   agnostic=opt_agnostic_nms)

        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0 = path[i], '%g: ' % i, im0s[i]
            else:
                p, s, im0 = path, '', im0s

            save_path = str(Path(out) / Path(p).name)
            s += '%gx%g ' % img.shape[2:]  # print string
            if det is not None and len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                          im0.shape).round()

                datium = {"hat": 0, "person": 0}

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += '%g %ss, ' % (n, names[int(c)])  # add to string
                    datium[names[int(c)]] = int(n)

                # with open('resultData.txt', 'w') as f:  # 设置文件对象
                #     f.write(str(datium))  # 将字符串写入文件中

                # localtime = time.time()

                print(datium['hat'], datium['person'])

                try:
                    # 执行sql语句
                    cursor.execute(
                        "INSERT INTO maskData(mask,nomask) VALUES({hat},{person})"
                        .format(hat=datium['hat'], person=datium['person']))
                    # 提交到数据库执行
                    db.commit()
                except:
                    print("发生错误")
                    # 如果发生错误则回滚
                    db.rollback()

                # db.close()

                # Write results
                for *xyxy, conf, cls in det:
                    if save_txt:  # Write to file
                        with open(save_path + '.txt', 'a') as file:
                            file.write(('%g ' * 6 + '\n') % (*xyxy, cls, conf))

                    if save_img or view_img:  # Add bbox to image
                        label = '%s %.2f' % (names[int(cls)], conf)
                        plot_one_box(xyxy,
                                     im0,
                                     label=label,
                                     color=colors[int(cls)])

            # Print time (inference + NMS)
            print('%sDone. (%.3fs)' % (s, time.time() - t))

            # Stream results
            if view_img:
                # cv2.imshow("webcam", im0)
                cv2.imwrite(
                    "C:/Users/y2554/Desktop/mask/server/output/camera.jpg",
                    im0)
                # if cv2.waitKey(1) == ord('q'):  # q to quit
                #     raise StopIteration

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'images':
                    cv2.imwrite(save_path, im0)
                    print("save_path:{}".format(save_path))
                else:
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release(
                            )  # release previous video writer

                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        vid_writer = cv2.VideoWriter(
                            save_path,
                            cv2.VideoWriter_fourcc('H', '2', '6', '4'), fps,
                            (w, h))
                    vid_writer.write(im0)

    if save_txt or save_img:
        print('Results saved to %s' % os.getcwd() + os.sep + out)
        print('Results saved to %s' % os.sep + save_path)
        if platform == 'darwin':  # MacOS
            os.system('open ' + out + ' ' + save_path)

    print('Done. (%.3fs)' % (time.time() - t0))
    # return save_path
    combineData = [save_path, datium]
    return combineData
def detect(save_img=False):
    img_size = (
        416, 256
    ) if ONNX_EXPORT else opt.img_size  # (320, 192) or (416, 256) or (608, 352) for (height, width)
    out, source, weights, half, view_img, save_txt = opt.output, opt.source, opt.weights, opt.half, opt.view_img, opt.save_txt
    webcam = source == '0' or source.startswith('rtsp') or source.startswith(
        'http') or source.endswith('.txt')

    # Initialize
    device = torch_utils.select_device(
        device='cpu' if ONNX_EXPORT else opt.device)
    if os.path.exists(out):
        shutil.rmtree(out)  # delete output folder
    os.makedirs(out)  # make new output folder

    # Initialize model
    model = Darknet(opt.cfg, img_size)

    # Load weights
    attempt_download(weights)
    if weights.endswith('.pt'):  # pytorch format
        model.load_state_dict(
            torch.load(weights, map_location=device)['model'])
    else:  # darknet format
        load_darknet_weights(model, weights)

    # Second-stage classifier
    classify = False
    if classify:
        modelc = torch_utils.load_classifier(name='resnet101',
                                             n=2)  # initialize
        modelc.load_state_dict(
            torch.load('weights/resnet101.pt',
                       map_location=device)['model'])  # load weights
        modelc.to(device).eval()

    # Fuse Conv2d + BatchNorm2d layers
    # model.fuse()

    # Eval mode
    model.to(device).eval()

    # Export mode
    if ONNX_EXPORT:
        img = torch.zeros((1, 3) + img_size)  # (1, 3, 320, 192)
        torch.onnx.export(model,
                          img,
                          'weights/export.onnx',
                          verbose=False,
                          opset_version=10)

        # Validate exported model
        import onnx
        model = onnx.load('weights/export.onnx')  # Load the ONNX model
        onnx.checker.check_model(model)  # Check that the IR is well formed
        print(onnx.helper.printable_graph(
            model.graph))  # Print a human readable representation of the graph
        return

    # Half precision
    half = half and device.type != 'cpu'  # half precision only supported on CUDA
    if half:
        model.half()

    # Set Dataloader
    vid_path, vid_writer = None, None
    if webcam:
        view_img = True
        torch.backends.cudnn.benchmark = True  # set True to speed up constant image size inference
        dataset = LoadStreams(source, img_size=img_size, half=half)
    else:
        save_img = True
        dataset = LoadImages(source, img_size=img_size, half=half)

    # Get names and colors
    names = load_classes(opt.names)
    colors = [[random.randint(0, 255) for _ in range(3)]
              for _ in range(len(names))]

    # Run inference
    t0 = time.time()
    for path, img, im0s, vid_cap in dataset:
        t = time.time()

        # Get detections
        img = torch.from_numpy(img).to(device)
        if img.ndimension() == 3:
            img = img.unsqueeze(0)
        pred = model(img)[0]

        if opt.half:
            pred = pred.float()

        # Apply NMS
        pred = non_max_suppression(pred,
                                   opt.conf_thres,
                                   opt.iou_thres,
                                   classes=opt.classes,
                                   agnostic=opt.agnostic_nms)

        # Apply Classifier
        if classify:
            pred = apply_classifier(pred, modelc, img, im0s)

        # Process detections
        for i, det in enumerate(pred):  # detections per image
            if webcam:  # batch_size >= 1
                p, s, im0 = path[i], '%g: ' % i, im0s[i]
            else:
                p, s, im0 = path, '', im0s

            save_path = str(Path(out) / Path(p).name)
            print('save_path ' + save_path[:-4])
            s += '%gx%g ' % img.shape[2:]  # print string

            if det is None:
                emptyList.append(save_path)

            print(save_path)

            if det is not None and len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_coords(img.shape[2:], det[:, :4],
                                          im0.shape).round()

                # Print results
                for c in det[:, -1].unique():
                    n = (det[:, -1] == c).sum()  # detections per class
                    s += '%g %ss, ' % (n, names[int(c)])  # add to string

                # Write results
                for *xyxy, conf, cls in det:
                    if save_txt:  # Write to file
                        with open(save_path[:-4] + '.txt', 'a') as file:
                            file.write(
                                ('%s %.3f %.2f %.2f %.2f %.2f ' + '\n') %
                                (names[int(cls)], conf, *xyxy))

                    if save_img or view_img:  # Add bbox to image
                        label = '%s %.2f' % (names[int(cls)], conf)
                        plot_one_box(xyxy,
                                     im0,
                                     label=label,
                                     color=colors[int(cls)])

            # Print time (inference + NMS)
            print('%sDone. (%.3fs)' % (s, time.time() - t))
            print(emptyList)
            # Stream results
            if view_img:
                cv2.imshow("webcam", im0)
                if cv2.waitKey(1) == ord('q'):  # q to quit
                    raise StopIteration

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'images':
                    cv2.imwrite(save_path, im0)
                    # print(save_path)
                    # pirate = cv2.imread(save_path)
                    # cv2.imshow('pirate', pirate)
                    # cv2.waitKey(0)
                else:
                    if vid_path != save_path:  # new video
                        vid_path = save_path
                        if isinstance(vid_writer, cv2.VideoWriter):
                            vid_writer.release(
                            )  # release previous video writer

                        fps = vid_cap.get(cv2.CAP_PROP_FPS)
                        w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                        h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        vid_writer = cv2.VideoWriter(
                            save_path, cv2.VideoWriter_fourcc(*opt.fourcc),
                            fps, (w, h))
                    vid_writer.write(im0)

    if save_txt or save_img:
        print('Results saved to %s' % os.getcwd() + os.sep + out)
        if platform == 'darwin':  # MacOS
            os.system('open ' + out + ' ' + save_path)

    print('Done. (%.3fs)' % (time.time() - t0))
Ejemplo n.º 15
0
    def load_model(self, hyp, tb_writer, opt, device, epochs):
        self.hyp = hyp
        self.tb_writer = tb_writer
        self.opt = opt
        self.device = device
        self.log_dir = os.path.join(self.opt['save_path'], self.opt['name'])
        self.wdir = str(Path(self.log_dir) / 'weights') + os.sep  # weights directory
        os.makedirs(self.wdir, exist_ok=True)
        self.last = self.wdir + 'last.pt'
        self.best = self.wdir + 'best.pt'
        self.results_file = self.log_dir + os.sep + 'results.txt'
        self.epochs = epochs
        weights = self.opt['weights']
        rank = self.opt['local_rank']

        # Save run settings
        with open(Path(self.log_dir) / 'hyp.yaml', 'w') as f:
            yaml.dump(self.hyp, f, sort_keys=False)
        with open(Path(self.log_dir) / 'opt.yaml', 'w') as f:
            yaml.dump(self.opt, f, sort_keys=False)

        # data Configure
        init_seeds(2 + rank)
        with open(self.opt['data']) as f:
            data_dict = yaml.load(f, Loader=yaml.FullLoader)  # model dict
        train_path = data_dict['train']
        test_path = data_dict['val']
        self.nc, self.names = (1, ['item']) if opt['single_cls'] else (
        int(data_dict['nc']), data_dict['names'])  # number classes, names
        assert len(self.names) == self.nc, '%g names found for nc=%g dataset in %s' % (len(self.names), self.nc, self.opt['data'])  # check

        # Remove previous results
        if rank in [-1, 0]:  # True
            for f in glob.glob('*_batch*.jpg') + glob.glob(self.results_file):
                os.remove(f)

        # Create model
        self.model = Model(self.opt['cfg'], nc=self.nc).to(self.device)

        # Image sizes
        self.gs = int(max(self.model.stride))  # grid size (max stride): 32?
        self.imgsz, self.imgsz_test = [check_img_size(x, self.gs) for x in self.opt['img_size']]  # verify imgsz are gs-multiples

        # Optimizer
        self.nbs = 64  # nominal batch size
        self.accumulate = max(round(self.nbs / self.batch_size), 1)  # accumulate loss before optimizing
        self.hyp['weight_decay'] *= self.batch_size * self.accumulate / self.nbs  # scale weight_decay
        pg0, pg1, pg2 = [], [], []  # optimizer parameter groups
        for k, v in self.model.named_parameters():
            if v.requires_grad:
                if '.bias' in k:
                    pg2.append(v)  # biases
                elif '.weight' in k and '.bn' not in k:
                    pg1.append(v)  # apply weight decay
                else:
                    pg0.append(v)  # all else

        if self.hyp['optimizer'] == 'adam':  # https://pytorch.org/docs/stable/_modules/torch/optim/lr_scheduler.html#OneCycleLR
            self.optimizer = optim.Adam(pg0, lr=self.hyp['lr0'], betas=(self.hyp['momentum'], 0.999))  # adjust beta1 to momentum
        else:
            self.optimizer = optim.SGD(pg0, lr=self.hyp['lr0'], momentum=self.hyp['momentum'], nesterov=True)

        self.optimizer.add_param_group({'params': pg1, 'weight_decay': self.hyp['weight_decay']})  # add pg1 with weight_decay
        self.optimizer.add_param_group({'params': pg2})  # add pg2 (biases)
        print('Optimizer groups: %g .bias, %g conv.weight, %g other' % (len(pg2), len(pg1), len(pg0)))
        del pg0, pg1, pg2

        # Load Model
        with torch_distributed_zero_first(rank):
            google_utils.attempt_download(weights)
        self.start_epoch, self.best_fitness = 0, 0.0
        if weights.endswith('.pt'):  # pytorch format
            ckpt = torch.load(weights, map_location=self.device)  # load checkpoint

            # load model
            try:
                exclude = ['anchor']  # exclude keys
                ckpt['model'] = {k: v for k, v in ckpt['model'].float().state_dict().items()
                                 if k in self.model.state_dict() and not any(x in k for x in exclude)
                                 and self.model.state_dict()[k].shape == v.shape}
                self.model.load_state_dict(ckpt['model'], strict=False)
                print('Transferred %g/%g items from %s' % (len(ckpt['model']), len(self.model.state_dict()), weights))
            except KeyError as e:
                s = "%s is not compatible with %s. This may be due to model differences or %s may be out of date. " \
                    "Please delete or update %s and try again, or use --weights '' to train from scratch." \
                    % (weights, self.opt['cfg'], weights, weights)
                raise KeyError(s) from e

            # load optimizer
            if ckpt['optimizer'] is not None:
                self.optimizer.load_state_dict(ckpt['optimizer'])
                self.best_fitness = ckpt['best_fitness']

            # load results
            if ckpt.get('training_results') is not None:
                with open(self.results_file, 'w') as file:
                    file.write(ckpt['training_results'])  # write results.txt

            # epochs
            self.start_epoch = ckpt['epoch'] + 1
            if self.epochs < self.start_epoch:
                print('%s has been trained for %g epochs. Fine-tuning for %g additional epochs.' %
                      (self.opt.weights, ckpt['epoch'], self.epochs))
                self.epochs += ckpt['epoch']  # finetune additional epochs

            del ckpt

        # Mixed precision training https://github.com/NVIDIA/apex
        if mixed_precision:
            self.model, self.optimizer = amp.initialize(self.model, self.optimizer, opt_level='O1', verbosity=0)

        # Scheduler https://arxiv.org/pdf/1812.01187.pdf
        self.lf = lambda x: (((1 + math.cos(x * math.pi / self.epochs)) / 2) ** 1.0) * 0.8 + 0.2  # cosine
        self.scheduler = lr_scheduler.LambdaLR(self.optimizer, lr_lambda=self.lf)
        # https://discuss.pytorch.org/t/a-problem-occured-when-resuming-an-optimizer/28822
        # plot_lr_scheduler(optimizer, scheduler, epochs)

        # DP mode
        if self.device.type != 'cpu' and rank == -1 and torch.cuda.device_count() > 1:
            self.model = torch.nn.DataParallel(self.model)

        # SyncBatchNorm
        if self.opt['sync_bn'] and self.device.type != 'cpu' and rank != -1:
            self.model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(self.model).to(self.device)
            print('Using SyncBatchNorm()')

        # Exponential moving average
        # self.model = attempt_load(weights, map_location=device)  # load FP32 model
        self.ema = torch_utils.ModelEMA(self.model) if rank in [-1, 0] else None

        # DDP mode
        if self.device.type != 'cpu' and rank != -1:
            self.model = DDP(self.model, device_ids=[rank], output_device=rank)
Ejemplo n.º 16
0
def download_weights(file, repo='T0bbster/OMapScanner'):
    attempt_download(file, repo)