def build_transfer_function(self):
        """
        Builds the transfer function according to the current state of the
        TransferFunctionHelper.

        Parameters
        ----------
        None

        Returns
        -------

        A ColorTransferFunction object.

        """
        if self.bounds is None:
            mylog.info(
                'Calculating data bounds. This may take a while.' +
                '  Set the TransferFunctionHelper.bounds to avoid this.')
            self.set_bounds()

        if self.log:
            mi, ma = np.log10(self.bounds[0]), np.log10(self.bounds[1])
        else:
            mi, ma = self.bounds

        self.tf = ColorTransferFunction((mi, ma),
                                        grey_opacity=self.grey_opacity,
                                        nbins=512)
        return self.tf
Ejemplo n.º 2
0
def make_yt_transfer(bounds=(0.0, 1.0), colormap="algae", bins=1000, scale=1.0, scale_func=None):
    """Defines a transfer function offset given a transfer function.
	"""
    mi, ma = bounds
    transfer = ColorTransferFunction((mi, ma), bins)
    if scale_func == None:
        transfer.map_to_colormap(mi, ma, colormap=colormap, scale=1.0)
    else:
        transfer.map_to_colormap(mi, ma, colormap=colormap, scale_func=scale_func)

    return transfer
Ejemplo n.º 3
0
def main():
    global window, ts, width, height
    (width, height) = (1024, 1024)

    glutInit(sys.argv)
    glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_ALPHA | GLUT_DEPTH)
    glutInitWindowSize(width, height)
    glutInitWindowPosition(0, 0)
    window = glutCreateWindow("Stereo Volume Rendering")

    glutDisplayFunc(display)
    glutIdleFunc(idle)
    glutReshapeFunc(resize)
    glutMouseFunc(mouseButton)
    glutMotionFunc(mouseMotion)
    glutKeyboardFunc(keyPressed)
    init_gl(width, height)

    # create texture for blitting to screen
    create_texture(width, height)

    import pycuda.gl.autoinit
    import pycuda.gl
    cuda_gl = pycuda.gl

    create_PBO(width, height)
    # ----- Load and Set Volume Data -----

    density_grid = np.load("/home/bogert/dd150_log_densities.npy")

    mi, ma = 21.5, 24.5
    bins = 5000
    tf = ColorTransferFunction((mi, ma), bins)
    tf.map_to_colormap(mi, ma, colormap="algae", scale_func=scale_func)

    ts = TheiaScene(volume=density_grid,
                    raycaster=FrontToBackRaycaster(size=(width, height),
                                                   tf=tf))

    ts.get_raycaster().set_sample_size(0.01)
    ts.get_raycaster().set_max_samples(5000)
    ts.update()

    glutMainLoop()
def main():
    global window, ts, width, height
    (width, height) = (1024, 1024)

    glutInit(sys.argv)
    glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_ALPHA | GLUT_DEPTH )
    glutInitWindowSize(width, height)
    glutInitWindowPosition(0, 0)
    window = glutCreateWindow("Stereo Volume Rendering")


    glutDisplayFunc(display)
    glutIdleFunc(idle)
    glutReshapeFunc(resize)
    glutMouseFunc( mouseButton )
    glutMotionFunc( mouseMotion )
    glutKeyboardFunc(keyPressed)
    init_gl(width, height)

    # create texture for blitting to screen
    create_texture(width, height)

    import pycuda.gl.autoinit
    import pycuda.gl
    cuda_gl = pycuda.gl

    create_PBO(width, height)
    # ----- Load and Set Volume Data -----

    density_grid = np.load("/home/bogert/dd150_log_densities.npy")

    mi, ma= 21.5, 24.5
    bins = 5000
    tf = ColorTransferFunction( (mi, ma), bins)
    tf.map_to_colormap(mi, ma, colormap="algae", scale_func = scale_func)

    ts = TheiaScene(volume = density_grid, raycaster = FrontToBackRaycaster(size = (width, height), tf = tf))

    ts.get_raycaster().set_sample_size(0.01)
    ts.get_raycaster().set_max_samples(5000)
    ts.update()

    glutMainLoop()
Ejemplo n.º 5
0
def make_yt_transfer(
        bounds=(0.0, 1.0), colormap="algae", bins=1000, scale=1.0,
        scale_func=None):
    """Defines a transfer function offset given a transfer function.
	"""
    mi, ma = bounds
    transfer = ColorTransferFunction((mi, ma), bins)
    if scale_func == None:
        transfer.map_to_colormap(mi, ma, colormap=colormap, scale=1.0)
    else:
        transfer.map_to_colormap(mi,
                                 ma,
                                 colormap=colormap,
                                 scale_func=scale_func)

    return transfer
class TransferFunctionHelper(object):
    r"""A transfer function helper.

    This attempts to help set up a good transfer function by finding
    bounds, handling linear/log options, and displaying the transfer
    function combined with 1D profiles of rendering quantity.

    Parameters
    ----------
    ds: A Dataset instance
        A static output that is currently being rendered. This is used to
        help set up data bounds.

    Notes
    -----
    """

    profiles = None

    def __init__(self, ds):
        self.ds = ds
        self.field = None
        self.log = False
        self.tf = None
        self.bounds = None
        self.grey_opacity = False
        self.profiles = {}

    def set_bounds(self, bounds=None):
        """
        Set the bounds of the transfer function.

        Parameters
        ----------
        bounds: array-like, length 2, optional
            A length 2 list/array in the form [min, max]. These should be the
            raw values and not the logarithm of the min and max. If bounds is
            None, the bounds of the data are calculated from all of the data
            in the dataset.  This can be slow for very large datasets.
        """
        if bounds is None:
            bounds = self.ds.h.all_data().quantities['Extrema'](self.field,
                                                                non_zero=True)
            bounds = [b.ndarray_view() for b in bounds]
        self.bounds = bounds

        # Do some error checking.
        assert (len(self.bounds) == 2)
        if self.log:
            assert (self.bounds[0] > 0.0)
            assert (self.bounds[1] > 0.0)
        return

    def set_field(self, field):
        """
        Set the field to be rendered

        Parameters
        ----------
        field: string
            The field to be rendered.
        """
        if field != self.field:
            self.log = self.ds._get_field_info(field).take_log
        self.field = field

    def set_log(self, log):
        """
        Set whether or not the transfer function should be in log or linear
        space. Also modifies the ds.field_info[field].take_log attribute to
        stay in sync with this setting.

        Parameters
        ----------
        log: boolean
            Sets whether the transfer function should use log or linear space.
        """
        self.log = log

    def build_transfer_function(self):
        """
        Builds the transfer function according to the current state of the
        TransferFunctionHelper.

        Parameters
        ----------
        None

        Returns
        -------

        A ColorTransferFunction object.

        """
        if self.bounds is None:
            mylog.info(
                'Calculating data bounds. This may take a while.' +
                '  Set the TransferFunctionHelper.bounds to avoid this.')
            self.set_bounds()

        if self.log:
            mi, ma = np.log10(self.bounds[0]), np.log10(self.bounds[1])
        else:
            mi, ma = self.bounds

        self.tf = ColorTransferFunction((mi, ma),
                                        grey_opacity=self.grey_opacity,
                                        nbins=512)
        return self.tf

    def setup_default(self):
        """Setup a default colormap

        Creates a ColorTransferFunction including 10 gaussian layers whose
        colors sample the 'spectral' colormap. Also attempts to scale the
        transfer function to produce a natural contrast ratio.

        """
        if LooseVersion(matplotlib.__version__) < LooseVersion('2.0.0'):
            colormap_name = 'spectral'
        else:
            colormap_name = 'nipy_spectral'
        self.tf.add_layers(10, colormap=colormap_name)
        factor = self.tf.funcs[-1].y.size / self.tf.funcs[-1].y.sum()
        self.tf.funcs[-1].y *= 2 * factor

    def plot(self, fn=None, profile_field=None, profile_weight=None):
        """
        Save the current transfer function to a bitmap, or display
        it inline.

        Parameters
        ----------
        fn: string, optional
            Filename to save the image to. If None, the returns an image
            to an IPython session.

        Returns
        -------

        If fn is None, will return an image to an IPython notebook.

        """
        from yt.visualization._mpl_imports import FigureCanvasAgg
        from matplotlib.figure import Figure
        if self.tf is None:
            self.build_transfer_function()
            self.setup_default()
        tf = self.tf
        if self.log:
            xfunc = np.logspace
            xmi, xma = np.log10(self.bounds[0]), np.log10(self.bounds[1])
        else:
            xfunc = np.linspace
            # Need to strip units off of the bounds to avoid a recursion error
            # in matplotlib 1.3.1
            xmi, xma = [np.float64(b) for b in self.bounds]

        x = xfunc(xmi, xma, tf.nbins)
        y = tf.funcs[3].y
        w = np.append(x[1:] - x[:-1], x[-1] - x[-2])
        colors = np.array(
            [tf.funcs[0].y, tf.funcs[1].y, tf.funcs[2].y,
             np.ones_like(x)]).T

        fig = Figure(figsize=[6, 3])
        canvas = FigureCanvasAgg(fig)
        ax = fig.add_axes([0.2, 0.2, 0.75, 0.75])
        ax.bar(x,
               tf.funcs[3].y,
               w,
               edgecolor=[0.0, 0.0, 0.0, 0.0],
               log=self.log,
               color=colors,
               bottom=[0])

        if profile_field is not None:
            try:
                prof = self.profiles[self.field]
            except KeyError:
                self.setup_profile(profile_field, profile_weight)
                prof = self.profiles[self.field]
            try:
                prof[profile_field]
            except KeyError:
                prof.add_fields([profile_field])
            # Strip units, if any, for matplotlib 1.3.1
            xplot = np.array(prof.x)
            yplot = np.array(prof[profile_field] * tf.funcs[3].y.max() /
                             prof[profile_field].max())
            ax.plot(xplot, yplot, color='w', linewidth=3)
            ax.plot(xplot, yplot, color='k')

        ax.set_xscale({True: 'log', False: 'linear'}[self.log])
        ax.set_xlim(x.min(), x.max())
        ax.set_xlabel(self.ds._get_field_info(self.field).get_label())
        ax.set_ylabel(r'$\mathrm{alpha}$')
        ax.set_ylim(y.max() * 1.0e-3, y.max() * 2)

        if fn is None:
            from IPython.core.display import Image
            f = BytesIO()
            canvas.print_figure(f)
            f.seek(0)
            img = f.read()
            return Image(img)
        else:
            fig.savefig(fn)

    def setup_profile(self, profile_field=None, profile_weight=None):
        if profile_field is None:
            profile_field = 'cell_volume'
        prof = create_profile(self.ds.all_data(),
                              self.field,
                              profile_field,
                              n_bins=128,
                              extrema={self.field: self.bounds},
                              weight_field=profile_weight,
                              logs={self.field: self.log})
        self.profiles[self.field] = prof
        return
Ejemplo n.º 7
0
#load the uniform grid from a numpy array file
bolshoi = "/home/bogert/log_densities_1024.npy"
density_grid = np.load(bolshoi)

#Set the TheiaScene to use the density_grid and
#setup the raycaster for a resulting 1080p image
ts = TheiaScene(volume=density_grid,
                raycaster=FrontToBackRaycaster(size=(1920, 1080)))

#the min and max values in the data to color
mi, ma = 0.0, 3.6

#setup colortransferfunction
bins = 5000
tf = ColorTransferFunction((mi, ma), bins)
tf.map_to_colormap(0.5, ma, colormap="spring", scale_func=scale_func)

#pass the transfer function to the ray caster
ts.source.raycaster.set_transfer(tf)

#Initial configuration for start of video
#set initial opacity and brightness values
#then zoom into the center of the data 30%
ts.source.raycaster.set_opacity(0.03)
ts.source.raycaster.set_brightness(2.3)
ts.camera.zoom(30.0)

#path to ffmpeg executable
FFMPEG_BIN = "/usr/local/bin/ffmpeg"
      return  np.minimum(1.0, (v-mi)/(ma-mi) + 0.0)

#load the uniform grid from a numpy array file
bolshoi = "/home/bogert/log_densities_1024.npy"
density_grid = np.load(bolshoi)

#Set the TheiaScene to use the density_grid and 
#setup the raycaster for a resulting 1080p image
ts = TheiaScene(volume = density_grid, raycaster = FrontToBackRaycaster(size = (1920,1080) ))

#the min and max values in the data to color
mi, ma = 0.0, 3.6

#setup colortransferfunction
bins = 5000
tf = ColorTransferFunction( (mi, ma), bins)
tf.map_to_colormap(0.5, ma, colormap="spring", scale_func = scale_func)

#pass the transfer function to the ray caster
ts.source.raycaster.set_transfer(tf)

#Initial configuration for start of video
#set initial opacity and brightness values
#then zoom into the center of the data 30%
ts.source.raycaster.set_opacity(0.03)
ts.source.raycaster.set_brightness(2.3)
ts.camera.zoom(30.0)

#path to ffmpeg executable
FFMPEG_BIN = "/usr/local/bin/ffmpeg"