Ejemplo n.º 1
0
def test_unbinned_simultaneous_nll():
    test_values = tf.constant(test_values_np)
    test_values = zfit.Data.from_tensor(obs=obs1, tensor=test_values)
    test_values2 = tf.constant(test_values_np2)
    test_values2 = zfit.Data.from_tensor(obs=obs1, tensor=test_values2)
    gaussian1, mu1, sigma1 = create_gauss1()
    gaussian2, mu2, sigma2 = create_gauss2()
    gaussian2 = gaussian2.create_extended(zfit.Parameter('yield_gauss2', 5))
    nll = zfit.loss.UnbinnedNLL(
        model=[gaussian1, gaussian2],
        data=[test_values, test_values2],
    )
    minimizer = Minuit(tolerance=1e-5)
    status = minimizer.minimize(loss=nll, params=[mu1, sigma1, mu2, sigma2])
    params = status.params
    assert set(nll.get_params()) == {mu1, mu2, sigma1, sigma2}

    assert params[mu1]['value'] == pytest.approx(np.mean(test_values_np),
                                                 rel=0.007)
    assert params[mu2]['value'] == pytest.approx(np.mean(test_values_np2),
                                                 rel=0.007)
    assert params[sigma1]['value'] == pytest.approx(np.std(test_values_np),
                                                    rel=0.007)
    assert params[sigma2]['value'] == pytest.approx(np.std(test_values_np2),
                                                    rel=0.007)
Ejemplo n.º 2
0
    def from_minuit(
            cls, loss: ZfitLoss, params: Iterable[ZfitParameter],
            result: iminuit.util.MigradResult,
            minimizer: Union[ZfitMinimizer, iminuit.Minuit]) -> 'FitResult':
        """Create a `FitResult` from a :py:class:~`iminuit.util.MigradResult` returned by
        :py:meth:`iminuit.Minuit.migrad` and a iminuit :py:class:~`iminuit.Minuit` instance with the corresponding
        zfit objects.

        Args:
            loss: zfit Loss that was minimized.
            params: Iterable of the zfit parameters that were floating during the minimization.
            result: Return value of the iminuit migrad command.
            minimizer: Instance of the iminuit Minuit that was used to minimize the loss.

        Returns:
            A `FitResult` as if zfit Minuit was used.
        """

        from .minimizer_minuit import Minuit
        if not isinstance(minimizer, Minuit):
            if isinstance(minimizer, iminuit.Minuit):
                minimizer_new = Minuit()
                minimizer_new._minuit_minimizer = minimizer
                minimizer = minimizer_new
            else:
                raise ValueError(
                    f"Minimizer {minimizer} not supported. Use `Minuit` from zfit or from iminuit."
                )
        params_result = [p_dict for p_dict in result[1]]
        result_vals = [res["value"] for res in params_result]
        set_values(params, values=result_vals)
        info = {
            'n_eval': result[0]['nfcn'],
            'n_iter': result[0]['ncalls'],
            # 'grad': result['jac'],
            # 'message': result['message'],
            'original': result[0]
        }
        edm = result[0]['edm']
        fmin = result[0]['fval']
        status = -999
        converged = result[0]['is_valid']
        params = OrderedDict(
            (p, res['value']) for p, res in zip(params, params_result))
        return cls(params=params,
                   edm=edm,
                   fmin=fmin,
                   info=info,
                   loss=loss,
                   status=status,
                   converged=converged,
                   minimizer=minimizer)
Ejemplo n.º 3
0
def test_extended_unbinned_nll():
    test_values = ztf.constant(test_values_np)
    test_values = zfit.Data.from_tensor(obs=obs1, tensor=test_values)
    gaussian3, mu3, sigma3, yield3 = create_gauss3ext()
    nll_object = zfit.loss.ExtendedUnbinnedNLL(model=gaussian3,
                                               data=test_values,
                                               fit_range=(-20, 20))
    minimizer = Minuit()
    status = minimizer.minimize(loss=nll_object)
    params = status.params
    assert params[mu3]['value'] == pytest.approx(np.mean(test_values_np), rel=0.005)
    assert params[sigma3]['value'] == pytest.approx(np.std(test_values_np), rel=0.005)
    assert params[yield3]['value'] == pytest.approx(yield_true, rel=0.005)
Ejemplo n.º 4
0
def test_unbinned_simultaneous_nll():
    test_values = tf.constant(test_values_np)
    test_values = zfit.Data.from_tensor(obs=obs1, tensor=test_values)
    test_values2 = tf.constant(test_values_np2)
    test_values2 = zfit.Data.from_tensor(obs=obs1, tensor=test_values2)
    gaussian1, mu1, sigma1 = create_gauss1()
    gaussian2, mu2, sigma2 = create_gauss2()
    nll_object = zfit.loss.UnbinnedNLL(model=[gaussian1, gaussian2],
                                       data=[test_values, test_values2],
                                       fit_range=[(-np.infty, np.infty), (-np.infty, np.infty)]
                                       )
    minimizer = Minuit()
    status = minimizer.minimize(loss=nll_object, params=[mu1, sigma1, mu2, sigma2])
    params = status.params
    assert params[mu1]['value'] == pytest.approx(np.mean(test_values_np), rel=0.005)
    assert params[mu2]['value'] == pytest.approx(np.mean(test_values_np2), rel=0.005)
    assert params[sigma1]['value'] == pytest.approx(np.std(test_values_np), rel=0.005)
    assert params[sigma2]['value'] == pytest.approx(np.std(test_values_np2), rel=0.005)
Ejemplo n.º 5
0
def test_unbinned_nll(weights, sigma):
    gaussian1, mu1, sigma1 = create_gauss1()
    gaussian2, mu2, sigma2 = create_gauss2()

    test_values = tf.constant(test_values_np)
    test_values = zfit.Data.from_tensor(obs=obs1,
                                        tensor=test_values,
                                        weights=weights)
    nll_object = zfit.loss.UnbinnedNLL(model=gaussian1, data=test_values)
    minimizer = Minuit(tolerance=1e-5)
    status = minimizer.minimize(loss=nll_object, params=[mu1, sigma1])
    params = status.params
    rel_error = 0.005 if weights is None else 0.1  # more fluctuating with weights

    assert params[mu1]['value'] == pytest.approx(np.mean(test_values_np),
                                                 rel=rel_error)
    assert params[sigma1]['value'] == pytest.approx(np.std(test_values_np),
                                                    rel=rel_error)

    constraints = zfit.constraint.nll_gaussian(
        params=[mu2, sigma2],
        observation=[mu_constr[0], sigma_constr[0]],
        uncertainty=sigma())
    nll_object = UnbinnedNLL(model=gaussian2,
                             data=test_values,
                             constraints=constraints)

    minimizer = Minuit(tolerance=1e-4)
    status = minimizer.minimize(loss=nll_object, params=[mu2, sigma2])
    params = status.params
    if weights is None:
        assert params[mu2]['value'] > np.average(test_values_np,
                                                 weights=weights)
        assert params[sigma2]['value'] < np.std(test_values_np)