def get_house_results(self): zip_code = zipcode.isequal(self.zip) d = zip_code.to_dict() point = (d['lat'], d['lon']) zips = zipcode.isinradius(point, self.radius) zips = [new_zip for new_zip in zips if not new_zip.decommisioned != "FALSE"] zips = [new_zip.zip for new_zip in zips if new_zip.zip_type == "STANDARD"] ads_info = [] for zip in zips: self.bro.driver.get("https://www.zillow.com/homes/for_sale/{0}_rb/house,condo,apartment_duplex,mobile,townhouse_type/?fromHomePage=true&shouldFireSellPageImplicitClaimGA=false&fromHomePageTab=buy".format(zip)) try: next_button = self.bro.driver.find_element_by_xpath("//li[@class='zsg-pagination-next']") except: next_button = 'Something' while next_button: ads = self.bro.driver.find_elements_by_xpath("//div[@id='search-results']//article") for ad in ads: properties = self._get_ad_properties(ad) if properties: ads_info.extend([properties]) try: next_button = self.bro.driver.find_element_by_xpath("//li[@class='zsg-pagination-next']") next_button.click() except: break time.sleep(2) # Should get rid of this self.bro.driver.close() write_to_csv("Zillow", ads_info)
def local_city_list_maker(starting_zip='98119', mile_radius=100): """returns a set of cities within radius of starting zip, formatted with state space city to use in weather_station_code_finder function""" zip_obj = zipcode.isequal(starting_zip) local_zips = zipcode.isinradius((zip_obj.lat, zip_obj.lon), mile_radius) return {' '.join([i.state, i.city]) for i in local_zips}
def coords2zipcode(latlon, radius=1.5): try: return zipcode.isinradius(latlon, radius)[0].zip except: zipcodes = [11232, 10001, 11211, 10026, 11101] zipcode = random.sample(zipcodes, 1)[0] print(zipcode) return zipcode
def local_zipcodes(startingzip='98119', radius=10): """ Returns zipcodes within radius of startingzip """ zip_obj = zipcode.isequal(startingzip) try: local_zips = zipcode.isinradius((zip_obj.lat, zip_obj.lon), radius) return [i.zip for i in local_zips] except AttributeError: return 'No surrounding data available for ' + startingzip
def local_city_list_maker(starting_zip='98119', mile_radius=100): """returns list of cities within radius of starting zip""" city_list = [] zip_obj = zipcode.isequal(starting_zip) local_zips = zipcode.isinradius((zip_obj.lat, zip_obj.lon), mile_radius) for i in local_zips: state_city = i.state + ' ' + i.city if state_city not in city_list: city_list.append(state_city) return city_list
def local_city_grabber(starting_zip='98119', mile_radius=100): """returns dict of zipcodes within radius of starting zip""" cities = {} zip_obj = zipcode.isequal(starting_zip) local_zips = zipcode.isinradius((zip_obj.lat, zip_obj.lon), mile_radius) for i in local_zips: state_city = i.state + ' ' + i.city if state_city not in cities: cities[state_city] = {'zip': i.zip} return cities
def zipcodes_list(st_items): # (lat, lon, radius) if type(st_items) == tuple: zc_objects = zipcode.isinradius(st_items[:2], st_items[2]) output = [str(i).split(" ", 1)[1].split(">")[0] for i in zc_objects] # If st_items is a single zipcode string. elif type(st_items) == str: zc_objects = zipcode.islike(st_items) output = [str(i).split(" ", 1)[1].split(">")[0] for i in zc_objects] # If st_items is a list of zipcode strings. elif type(st_items) == list: zc_objects = [n for i in st_items for n in zipcode.islike(str(i))] output = [str(i).split(" ", 1)[1].split(">")[0] for i in zc_objects] else: raise ValueError("input 'st_items' must be of type str or list") return (output)
import zipcode import re my_zip = zipcode.isequal('98119') local_zips = zipcode.isinradius((my_zip.lat, my_zip.lon), 100) zip_dict = {} ## good code!!! for i in local_zips: state_city = i.state + ' ' + i.city if state_city not in zip_dict: zip_dict[state_city] = [i.zip] zip_dict[state_city].append(i.zip) ## good code!!! print(zip_dict) code_db = open('weather_codes.txt', 'r').read() for i in zip_dict: #m = re.search('{}.+'.format(i), code_db) m = re.search(i + '.*[PKXQ]\w{3}\s\s', code_db) #cm = re.search('^[PKXQ]{4}', m.group) # m = re.findall(i +'\s^[PKXQ]{4}', code_db) try:
airbnb_nyc_2b_by_zipcode = airbnb_nyc_2b_by_zipcode[(airbnb_nyc_2b_by_zipcode['rental_data_points_count']>3)] print("#"*terminal_width) # join data from zillow lastest = len(zillow_df.columns) - 1 zillow_df = pd.concat([zillow_df.ix[:,1],zillow_df.ix[:,lastest]], axis=1) zillow_df.columns = ['RegionName','propertyPrice'] main_df = pd.merge(airbnb_nyc_2b_by_zipcode, zillow_df, left_on = 'zipcode', right_on = 'RegionName', how = 'left') print main_df.info() # Since we are going to purchase properties recently, I used the latest price, which is the last column print "only 18 records with a property price" print("#"*terminal_width) # In the following, I will try to match the property price according to adjacent zipcodes import zipcode import zipcodes # estimate the missing property prices main_df['adjacentZipcodes'] = main_df['zipcode'].map(lambda x: zipcode.isinradius((zipcodes.matching(x)[0]['lat'],zipcodes.matching(x)[0]['long']),1)) # save zipcodes with actual property price into a dict actualPrices = main_df[['RegionName','propertyPrice']].set_index('RegionName')['propertyPrice'].to_dict() def f(x): res = [] for i in x: if i.zip in actualPrices.keys(): res.append(actualPrices[i.zip]) return np.mean(res) main_df['propertyPrice1st'] = main_df['adjacentZipcodes'].map(f) main_df['estimatePrice'] = main_df['propertyPrice'] main_df.estimatePrice.fillna(main_df.propertyPrice1st, inplace=True) print "the number of zip codes with a property price:" print main_df['estimatePrice'].count() # 76
def local_city_grabber(starting_zip='98119', mile_radius=100): """returns set of cities within radius of starting zip""" zip_obj = zipcode.isequal(starting_zip) local_zips = zipcode.isinradius((zip_obj.lat, zip_obj.lon), mile_radius) return {'{} {}'.format(i.state, i.city) for i in local_zips}
def local_zipcodes(startingzip='98119', radius=100): """ Returns zipcodes within radius of startingzip""" zip_obj = zipcode.isequal(startingzip) local_zips = zipcode.isinradius((zip_obj.lat, zip_obj.lon), radius) return {i.zip for i in local_zips}
def create_dataframe(tweets_data): tweets = pd.DataFrame(index=range(len(tweets_data)), columns=[ 'text', 'created_at', 'location', 'state', 'sentiment', 'sentiment_cat', 'country_code', 'hour' ]) for i in range(len(tweets_data)): try: tweets['text'][i] = tweets_data[i]['text'] except: tweets['text'][i] = "" try: tweets['location'][i] = tweets_data[i]['user']['location'] except: tweets['location'][i] = 'NA' try: tweets['country_code'][i] = tweets_data[i]['place']['country_code'] except: tweets['country_code'][i] = '' try: lon = tweets_data[i]['place']['bounding_box']['coordinates'][0][0][ 0] except: lon = 'NA' try: lat = tweets_data[i]['place']['bounding_box']['coordinates'][0][0][ 1] except: lat = 'NA' #print (lat,lon) try: tweets['created_at'][i] = tweets_data[i]['created_at'] except: tweets['created_at'][i] = 'NA' try: tweets['hour'][i] = tweets['created_at'][i][11:13] except: tweets['hour'][i] = 'NA' try: stateFromData = tweets['location'][i].split(',')[1] except: stateFromData = '' if len(stateFromData) == 2: tweets['state'][i] = stateFromData else: if lat != 'NA': radius = 10 incre = 10 zips = zipcode.isinradius((lat, lon), radius) while len(zips) == 0: radius = radius + incre zips = zipcode.isinradius((lat, lon), radius) incre = incre + 10 myzip = zipcode.isequal(str(zips[0].zip)) tweets['state'][i] = myzip.state else: tweets['state'][i] = 'NA' blob = TextBlob(tweets['text'][i]) try: sentence = blob.sentences[0] tweets['sentiment'][i] = float(sentence.sentiment.polarity) except: tweets['sentiment'][i] = 0 if tweets['sentiment'][i] < 0: tweets['sentiment_cat'][i] = 'Neg' else: if tweets['sentiment'][i] > 0: tweets['sentiment_cat'][i] = 'Pos' else: tweets['sentiment_cat'][i] = 'Neu' print(tweets.head()) return tweets
import json import zipcode from pprint import pprint with open('swimmingpools.json') as data_file: data = json.load(data_file) #pprint(data) myzip = zipcode.isequal('11102') print myzip.state print myzip.city.title() print zipcode.isinradius((40.7788, -73.9227), 2.0)
import zipcode import re my_zip = zipcode.isequal('98119') local_zips = zipcode.isinradius((my_zip.lat, my_zip.lon), 100) zip_dict = {} ## good code!!! for i in local_zips: state_city = i.state + ' ' + i.city if state_city not in zip_dict: zip_dict[state_city] = [i.zip] zip_dict[state_city].append(i.zip) ## good code!!! print(zip_dict) code_db = open('weather_codes.txt', 'r').read() for i in zip_dict: #m = re.search('{}.+'.format(i), code_db) m = re.search(i + '.*[PKXQ]\w{3}\s\s', code_db) #cm = re.search('^[PKXQ]{4}', m.group) # m = re.findall(i +'\s^[PKXQ]{4}', code_db) try: print(m.group()) cm = re.search('\s[PKXQ]\w{3}\s\s', m.group()) print(cm.group()) # print(m.groups()) except: