Ejemplo n.º 1
0
    def test_screen(self):
        loader = self.loader
        finder = self.asset_finder
        asset_ids = array(self.asset_ids)
        engine = SimplePipelineEngine(
            lambda column: loader,
            self.dates,
            self.asset_finder,
        )
        num_dates = 5
        dates = self.dates[10:10 + num_dates]

        factor = AssetID()
        for asset_id in asset_ids:
            p = Pipeline(columns={'f': factor}, screen=factor <= asset_id)
            result = engine.run_pipeline(p, dates[0], dates[-1])

            expected_sids = asset_ids[asset_ids <= asset_id]
            expected_assets = finder.retrieve_all(expected_sids)
            expected_result = DataFrame(
                index=MultiIndex.from_product([dates, expected_assets]),
                data=tile(expected_sids.astype(float), [len(dates)]),
                columns=['f'],
            )

            assert_frame_equal(result, expected_result)
Ejemplo n.º 2
0
    def test_correlation_and_regression_with_bad_asset(self):
        """
        Test that `RollingPearsonOfReturns`, `RollingSpearmanOfReturns` and
        `RollingLinearRegressionOfReturns` raise the proper exception when
        given a nonexistent target asset.
        """
        my_asset = Equity(
            0,
            real_sid='0',
            currency='USD',
            exchange_info=ExchangeInfo('TEST', 'TEST FULL', 'US'),
        )
        start_date = self.pipeline_start_date
        end_date = self.pipeline_end_date
        run_pipeline = self.run_pipeline

        # This filter is arbitrary; the important thing is that we test each
        # factor both with and without a specified mask.
        my_asset_filter = AssetID().eq(1)

        for mask in (NotSpecified, my_asset_filter):
            pearson_factor = RollingPearsonOfReturns(
                target=my_asset,
                returns_length=3,
                correlation_length=3,
                mask=mask,
            )
            spearman_factor = RollingSpearmanOfReturns(
                target=my_asset,
                returns_length=3,
                correlation_length=3,
                mask=mask,
            )
            regression_factor = RollingLinearRegressionOfReturns(
                target=my_asset,
                returns_length=3,
                regression_length=3,
                mask=mask,
            )

            with self.assertRaises(NonExistentAssetInTimeFrame):
                run_pipeline(
                    Pipeline(columns={'pearson_factor': pearson_factor}),
                    start_date,
                    end_date,
                )
            with self.assertRaises(NonExistentAssetInTimeFrame):
                run_pipeline(
                    Pipeline(columns={'spearman_factor': spearman_factor}),
                    start_date,
                    end_date,
                )
            with self.assertRaises(NonExistentAssetInTimeFrame):
                run_pipeline(
                    Pipeline(columns={'regression_factor': regression_factor}),
                    start_date,
                    end_date,
                )
Ejemplo n.º 3
0
    def test_same_day_pipeline(self):
        loader = self.loader
        engine = SimplePipelineEngine(
            lambda column: loader, self.dates, self.asset_finder,
        )
        factor = AssetID()
        asset = self.asset_ids[0]
        p = Pipeline(columns={'f': factor}, screen=factor <= asset)

        # The crux of this is that when we run the pipeline for a single day
        #  (i.e. start and end dates are the same) we should accurately get
        # data for the day prior.
        result = engine.run_pipeline(p, self.dates[1], self.dates[1])
        self.assertEqual(result['f'][0], 1.0)
Ejemplo n.º 4
0
    def test_slice_with_masking(self, unmasked_column, slice_column):
        """
        Test that masking a factor that uses slices as inputs does not mask the
        slice data.
        """
        sids = self.sids
        asset_finder = self.asset_finder
        start_date = self.pipeline_start_date
        end_date = self.pipeline_end_date

        # Create a filter that masks out all but a single asset.
        unmasked_asset = asset_finder.retrieve_asset(sids[unmasked_column])
        unmasked_asset_only = (AssetID().eq(unmasked_asset.sid))

        # Asset used to create our slice. In the cases where this is different
        # than `unmasked_asset`, our slice should still have non-missing data
        # when used as an input to our custom factor. That is, it should not be
        # masked out.
        slice_asset = asset_finder.retrieve_asset(sids[slice_column])

        returns = Returns(window_length=2, inputs=[self.col])
        returns_slice = returns[slice_asset]

        returns_results = self.run_pipeline(
            Pipeline(columns={'returns': returns}),
            start_date,
            end_date,
        )
        returns_results = returns_results['returns'].unstack()

        class UsesSlicedInput(CustomFactor):
            window_length = 1
            inputs = [returns, returns_slice]

            def compute(self, today, assets, out, returns, returns_slice):
                # Ensure that our mask correctly affects the `returns` input
                # and does not affect the `returns_slice` input.
                assert returns.shape == (1, 1)
                assert returns_slice.shape == (1, 1)
                assert returns[0, 0] == \
                    returns_results.loc[today, unmasked_asset]
                assert returns_slice[0, 0] == \
                    returns_results.loc[today, slice_asset]

        columns = {'masked': UsesSlicedInput(mask=unmasked_asset_only)}

        # Assertions about the expected data are made in the `compute` function
        # of our custom factor above.
        self.run_pipeline(Pipeline(columns=columns), start_date, end_date)
Ejemplo n.º 5
0
    def test_factor_regression_method_two_factors(self, regression_length):
        """
        Tests for `Factor.linear_regression` when passed another 2D factor
        instead of a Slice.
        """
        assets = self.assets
        dates = self.dates
        start_date = self.pipeline_start_date
        end_date = self.pipeline_end_date
        start_date_index = self.start_date_index
        end_date_index = self.end_date_index
        num_days = self.num_days
        run_pipeline = self.run_pipeline

        # The order of these is meant to align with the output of `linregress`.
        outputs = ['beta', 'alpha', 'r_value', 'p_value', 'stderr']

        # Ensure that the `linear_regression` method cannot be called with two
        # 2D factors which have different masks.
        returns_masked_1 = Returns(
            window_length=5,
            inputs=[self.col],
            mask=AssetID().eq(1),
        )
        returns_masked_2 = Returns(
            window_length=5,
            inputs=[self.col],
            mask=AssetID().eq(2),
        )
        with self.assertRaises(IncompatibleTerms):
            returns_masked_1.linear_regression(
                target=returns_masked_2,
                regression_length=regression_length,
            )

        returns_5 = Returns(window_length=5, inputs=[self.col])
        returns_10 = Returns(window_length=10, inputs=[self.col])

        regression_factor = returns_5.linear_regression(
            target=returns_10,
            regression_length=regression_length,
        )

        columns = {
            output: getattr(regression_factor, output)
            for output in outputs
        }
        pipeline = Pipeline(columns=columns)

        results = run_pipeline(pipeline, start_date, end_date)

        output_results = {}
        expected_output_results = {}
        for output in outputs:
            output_results[output] = results[output].unstack()
            expected_output_results[output] = full_like(
                output_results[output],
                nan,
            )

        # Run a separate pipeline that calculates returns starting
        # (regression_length - 1) days prior to our start date. This is because
        # we need (regression_length - 1) extra days of returns to compute our
        # expected regressions.
        columns = {'returns_5': returns_5, 'returns_10': returns_10}
        results = run_pipeline(
            Pipeline(columns=columns),
            dates[start_date_index - (regression_length - 1)],
            dates[end_date_index],
        )
        returns_5_results = results['returns_5'].unstack()
        returns_10_results = results['returns_10'].unstack()

        # On each day, for each asset, calculate the expected regression
        # results of Y ~ X where Y is the asset's rolling 5 day returns and X
        # is the asset's rolling 10 day returns. Each regression is calculated
        # over `regression_length` days of data.
        for day in range(num_days):
            todays_returns_5 = returns_5_results.iloc[day:day +
                                                      regression_length]
            todays_returns_10 = returns_10_results.iloc[day:day +
                                                        regression_length]
            for asset, asset_returns_5 in todays_returns_5.iteritems():
                asset_column = int(asset) - 1
                asset_returns_10 = todays_returns_10[asset]
                expected_regression_results = linregress(
                    y=asset_returns_5,
                    x=asset_returns_10,
                )
                for i, output in enumerate(outputs):
                    expected_output_results[output][day, asset_column] = \
                        expected_regression_results[i]

        for output in outputs:
            output_result = output_results[output]
            expected_output_result = DataFrame(
                expected_output_results[output],
                index=dates[start_date_index:end_date_index + 1],
                columns=assets,
            )
            assert_frame_equal(output_result, expected_output_result)
Ejemplo n.º 6
0
    def test_factor_correlation_methods_two_factors(self, correlation_length):
        """
        Tests for `Factor.pearsonr` and `Factor.spearmanr` when passed another
        2D factor instead of a Slice.
        """
        assets = self.assets
        dates = self.dates
        start_date = self.pipeline_start_date
        end_date = self.pipeline_end_date
        start_date_index = self.start_date_index
        end_date_index = self.end_date_index
        num_days = self.num_days
        run_pipeline = self.run_pipeline

        # Ensure that the correlation methods cannot be called with two 2D
        # factors which have different masks.
        returns_masked_1 = Returns(
            window_length=5,
            inputs=[self.col],
            mask=AssetID().eq(1),
        )
        returns_masked_2 = Returns(
            window_length=5,
            inputs=[self.col],
            mask=AssetID().eq(2),
        )
        with self.assertRaises(IncompatibleTerms):
            returns_masked_1.pearsonr(
                target=returns_masked_2,
                correlation_length=correlation_length,
            )
        with self.assertRaises(IncompatibleTerms):
            returns_masked_1.spearmanr(
                target=returns_masked_2,
                correlation_length=correlation_length,
            )

        returns_5 = Returns(window_length=5, inputs=[self.col])
        returns_10 = Returns(window_length=10, inputs=[self.col])

        pearson_factor = returns_5.pearsonr(
            target=returns_10,
            correlation_length=correlation_length,
        )
        spearman_factor = returns_5.spearmanr(
            target=returns_10,
            correlation_length=correlation_length,
        )

        columns = {
            'pearson_factor': pearson_factor,
            'spearman_factor': spearman_factor,
        }
        pipeline = Pipeline(columns=columns)

        results = run_pipeline(pipeline, start_date, end_date)
        pearson_results = results['pearson_factor'].unstack()
        spearman_results = results['spearman_factor'].unstack()

        # Run a separate pipeline that calculates returns starting
        # (correlation_length - 1) days prior to our start date. This is
        # because we need (correlation_length - 1) extra days of returns to
        # compute our expected correlations.
        columns = {'returns_5': returns_5, 'returns_10': returns_10}
        results = run_pipeline(
            Pipeline(columns=columns),
            dates[start_date_index - (correlation_length - 1)],
            dates[end_date_index],
        )
        returns_5_results = results['returns_5'].unstack()
        returns_10_results = results['returns_10'].unstack()

        # On each day, calculate the expected correlation coefficients
        # between each asset's 5 and 10 day rolling returns. Each correlation
        # is calculated over `correlation_length` days.
        expected_pearson_results = full_like(pearson_results, nan)
        expected_spearman_results = full_like(spearman_results, nan)
        for day in range(num_days):
            todays_returns_5 = returns_5_results.iloc[day:day +
                                                      correlation_length]
            todays_returns_10 = returns_10_results.iloc[day:day +
                                                        correlation_length]
            for asset, asset_returns_5 in todays_returns_5.iteritems():
                asset_column = int(asset) - 1
                asset_returns_10 = todays_returns_10[asset]
                expected_pearson_results[day, asset_column] = pearsonr(
                    asset_returns_5,
                    asset_returns_10,
                )[0]
                expected_spearman_results[day, asset_column] = spearmanr(
                    asset_returns_5,
                    asset_returns_10,
                )[0]

        expected_pearson_results = DataFrame(
            data=expected_pearson_results,
            index=dates[start_date_index:end_date_index + 1],
            columns=assets,
        )
        assert_frame_equal(pearson_results, expected_pearson_results)

        expected_spearman_results = DataFrame(
            data=expected_spearman_results,
            index=dates[start_date_index:end_date_index + 1],
            columns=assets,
        )
        assert_frame_equal(spearman_results, expected_spearman_results)