Ejemplo n.º 1
0
    def test_minutely_fetcher(self):
        self.responses.add(
            self.responses.GET,
            'https://fake.urls.com/aapl_minute_csv_data.csv',
            body=AAPL_MINUTE_CSV_DATA,
            content_type='text/csv',
        )

        sim_params = factory.create_simulation_parameters(
            start=pd.Timestamp("2006-01-03", tz='UTC'),
            end=pd.Timestamp("2006-01-10", tz='UTC'),
            emission_rate="minute",
            data_frequency="minute"
        )

        test_algo = TradingAlgorithm(
            script="""
from zipline.api import fetch_csv, record, sid

def initialize(context):
    fetch_csv('https://fake.urls.com/aapl_minute_csv_data.csv')

def handle_data(context, data):
    record(aapl_signal=data.current(sid(24), "signal"))
""", sim_params=sim_params, data_frequency="minute", env=self.env)

        # manually setting data portal and getting generator because we need
        # the minutely emission packets here.  TradingAlgorithm.run() only
        # returns daily packets.
        test_algo.data_portal = FetcherDataPortal(self.env,
                                                  self.trading_calendar)
        gen = test_algo.get_generator()
        perf_packets = list(gen)

        signal = [result["minute_perf"]["recorded_vars"]["aapl_signal"] for
                  result in perf_packets if "minute_perf" in result]

        self.assertEqual(6 * 390, len(signal))

        # csv data is:
        # symbol,date,signal
        # aapl,1/4/06 5:31AM, 1
        # aapl,1/4/06 11:30AM, 2
        # aapl,1/5/06 5:31AM, 1
        # aapl,1/5/06 11:30AM, 3
        # aapl,1/9/06 5:31AM, 1
        # aapl,1/9/06 11:30AM, 4 for dates 1/3 to 1/10

        # 2 signals per day, only last signal is taken. So we expect
        # 390 bars of signal NaN on 1/3
        # 390 bars of signal 2 on 1/4
        # 390 bars of signal 3 on 1/5
        # 390 bars of signal 3 on 1/6 (forward filled)
        # 390 bars of signal 4 on 1/9
        # 390 bars of signal 4 on 1/9 (forward filled)

        np.testing.assert_array_equal([np.NaN] * 390, signal[0:390])
        np.testing.assert_array_equal([2] * 390, signal[390:780])
        np.testing.assert_array_equal([3] * 780, signal[780:1560])
        np.testing.assert_array_equal([4] * 780, signal[1560:])
Ejemplo n.º 2
0
    def run_algo(self, code, sim_params=None, data_frequency="daily"):
        if sim_params is None:
            sim_params = self.sim_params

        test_algo = TradingAlgorithm(script=code,
                                     sim_params=sim_params,
                                     env=self.env,
                                     data_frequency=data_frequency)

        results = test_algo.run(FetcherDataPortal(self.env))

        return results
    def run_algo(self, code, sim_params=None, data_frequency="daily"):
        if sim_params is None:
            sim_params = self.sim_params

        test_algo = self.make_algo(
            script=code,
            sim_params=sim_params,
            data_frequency=data_frequency,
            data_portal=FetcherDataPortal(self.env, self.trading_calendar),
        )
        results = test_algo.run()

        return results
Ejemplo n.º 4
0
    def run_algo(self, code, sim_params=None):
        if sim_params is None:
            sim_params = self.sim_params

        test_algo = self.make_algo(
            script=code,
            sim_params=sim_params,
            data_portal=FetcherDataPortal(self.asset_finder,
                                          self.trading_calendar,
                                          self.DATA_PORTAL_FIRST_TRADING_DAY),
        )
        results = test_algo.run()

        return results