Ejemplo n.º 1
0
    def to_keras(self):
        """Convert a Onnx model to KerasNet model.
      """
        # parse network inputs, aka parameters
        for init_tensor in self.graph.initializer:
            if not init_tensor.name.strip():
                raise ValueError("Tensor's name is required.")
            self.initializer[init_tensor.name] = OnnxInput(
                name=init_tensor.name, zvalue=OnnxHelper.to_numpy(init_tensor))

        # converting GraphProto message
        # i: ValueInfoProto
        for i in self.graph.input:
            if i.name in self.initializer:
                # we should have added that via graph._initializer
                self._all_tensors[i.name] = self.initializer[i.name]
            else:
                self._inputs[i.name] = OnnxInput(
                    name=i.name, zvalue=OnnxHelper.get_shape_from_node(i))
                self._all_tensors[i.name] = self._inputs[i.name]

        # constructing nodes, nodes are stored as directed acyclic graph
        # converting NodeProto message
        for node in self.graph.node:
            inputs = []
            for i in node.input:
                if i == "":
                    continue
                if i not in self._all_tensors:
                    raise Exception("Cannot find {}".format(i))
                inputs.append(self._all_tensors[i])

            mapper = OperatorMapper.of(node, self.initializer, inputs)
            # update inputs and all_tensors
            for input in mapper.model_inputs:
                # Only update the original inputs here.
                if input.name in self._inputs:
                    self._inputs[input.name] = input.zvalue
                self._all_tensors[input.name] = input.zvalue
            tensor = mapper.to_tensor()
            output_ids = list(node.output)
            assert len(output_ids) == 1 or node.op_type == "Dropout",\
                "Only support single output for now"
            self._all_tensors[output_ids[0]] = OnnxInput(name=tensor.name,
                                                         zvalue=tensor)

        output_tensors = []
        for i in self.graph.output:
            if i.name not in self._all_tensors:
                raise Exception("The output haven't been calculate")
            output_tensors.append(self._all_tensors[i.name].zvalue)
        model = zmodels.Model(input=list(self._inputs.values()),
                              output=output_tensors)
        return model
Ejemplo n.º 2
0
    def run_node(node, inputs):
        inputs_list = []
        assert len(inputs) == len(list(node.input))
        for node_input, input_data in zip(node.input, inputs):
            inputs_list.append(OnnxInput(node_input, input_data))
        mapper = OperatorMapper.of(node, set(), inputs_list)
        out_tensor = mapper.to_tensor()

        model = zmodels.Model(input=[i.zvalue for i in mapper.model_inputs], output=out_tensor)
        data = [i.data for i in mapper.model_inputs]
        output = model.forward(data if len(data) > 1 else data[0])
        result = {}
        if isinstance(output, list):
            assert len(output) == len(node.output)
            for o, no in zip(output, node.output):
                result[no] = o
        else:
            result[node.output[0]] = output
        return result
Ejemplo n.º 3
0
    def run_node(node, inputs, is_training=False):
        warnings.warn("deprecated in 0.10.0, and will be removed in future release")
        inputs_list = []
        assert len(inputs) == len(list(node.input))
        for node_input, input_data in zip(node.input, inputs):
            inputs_list.append(OnnxInput(node_input, input_data))
        mapper = OperatorMapper.of(node, set(), inputs_list)
        out_tensor = mapper.to_tensor()

        model = zmodels.Model(input=[i.zvalue for i in mapper.model_inputs], output=out_tensor)
        data = [i.data for i in mapper.model_inputs]
        model.training(is_training)
        output = model.forward(data if len(data) > 1 else data[0])
        result = {}
        if isinstance(output, list):
            assert len(output) == len(node.output)
            for o, no in zip(output, node.output):
                result[no] = o
        else:
            result[node.output[0]] = output
        return result