Ejemplo n.º 1
0
    def test_vbs1(self):

        with tf.Graph().as_default():
            # Data loading and preprocessing
            import zqtflearn.datasets.mnist as mnist
            X, Y, testX, testY = mnist.load_data(one_hot=True)
            X = X.reshape([-1, 28, 28, 1])
            testX = testX.reshape([-1, 28, 28, 1])
            X = X[:20, :, :, :]
            Y = Y[:20, :]
            testX = testX[:10, :, :, :]
            testY = testY[:10, :]

            # Building convolutional network
            network = input_data(shape=[None, 28, 28, 1], name='input')
            network = conv_2d(network,
                              32,
                              3,
                              activation='relu',
                              regularizer="L2")
            network = max_pool_2d(network, 2)
            network = local_response_normalization(network)
            network = conv_2d(network,
                              64,
                              3,
                              activation='relu',
                              regularizer="L2")
            network = max_pool_2d(network, 2)
            network = local_response_normalization(network)
            network = fully_connected(network, 128, activation='tanh')
            network = dropout(network, 0.8)
            network = fully_connected(network, 256, activation='tanh')
            network = dropout(network, 0.8)
            network = fully_connected(network, 10, activation='softmax')
            network = regression(network,
                                 optimizer='adam',
                                 learning_rate=0.01,
                                 loss='categorical_crossentropy',
                                 name='target')

            # Training
            model = zqtflearn.DNN(network, tensorboard_verbose=3)
            model.fit({'input': X}, {'target': Y},
                      n_epoch=1,
                      batch_size=10,
                      validation_set=({
                          'input': testX
                      }, {
                          'target': testY
                      }),
                      validation_batch_size=5,
                      snapshot_step=10,
                      show_metric=True,
                      run_id='convnet_mnist_vbs')

            self.assertEqual(model.train_ops[0].validation_batch_size, 5)
            self.assertEqual(model.train_ops[0].batch_size, 10)
 def make_core_network(network):
     network = zqtflearn.reshape(network, [-1, 28, 28, 1], name="reshape")
     network = conv_2d(network, 32, 3, activation='relu', regularizer="L2")
     network = max_pool_2d(network, 2)
     network = local_response_normalization(network)
     network = conv_2d(network, 64, 3, activation='relu', regularizer="L2")
     network = max_pool_2d(network, 2)
     network = local_response_normalization(network)
     network = fully_connected(network, 128, activation='tanh')
     network = dropout(network, 0.8)
     network = fully_connected(network, 256, activation='tanh')
     network = dropout(network, 0.8)
     network = fully_connected(network, 10, activation='softmax')
     return network
Ejemplo n.º 3
0
    def test_vm1(self):

        with tf.Graph().as_default():
            # Data loading and preprocessing
            import zqtflearn.datasets.mnist as mnist
            X, Y, testX, testY = mnist.load_data(one_hot=True)
            X = X.reshape([-1, 28, 28, 1])
            testX = testX.reshape([-1, 28, 28, 1])
            X = X[:10, :, :, :]
            Y = Y[:10, :]

            # Building convolutional network
            network = input_data(shape=[None, 28, 28, 1], name='input')
            network = conv_2d(network,
                              32,
                              3,
                              activation='relu',
                              regularizer="L2")
            network = max_pool_2d(network, 2)
            network = local_response_normalization(network)
            network = conv_2d(network,
                              64,
                              3,
                              activation='relu',
                              regularizer="L2")
            network = max_pool_2d(network, 2)
            network = local_response_normalization(network)
            network = fully_connected(network, 128, activation='tanh')
            network = dropout(network, 0.8)
            network = fully_connected(network, 256, activation='tanh')
            network = dropout(network, 0.8)

            # construct two varaibles to add as additional "valiation monitors"
            # these varaibles are evaluated each time validation happens (eg at a snapshot)
            # and the results are summarized and output to the tensorboard events file,
            # together with the accuracy and loss plots.
            #
            # Here, we generate a dummy variable given by the sum over the current
            # network tensor, and a constant variable.  In practice, the validation
            # monitor may present useful information, like confusion matrix
            # entries, or an AUC metric.
            with tf.name_scope('CustomMonitor'):
                test_var = tf.reduce_sum(tf.cast(network, tf.float32),
                                         name="test_var")
                test_const = tf.constant(32.0, name="custom_constant")

            print("network=%s, test_var=%s" % (network, test_var))
            network = fully_connected(network, 10, activation='softmax')
            network = regression(network,
                                 optimizer='adam',
                                 learning_rate=0.01,
                                 loss='categorical_crossentropy',
                                 name='target',
                                 validation_monitors=[test_var, test_const])

            # Training
            model = zqtflearn.DNN(network, tensorboard_verbose=3)
            model.fit({'input': X}, {'target': Y},
                      n_epoch=1,
                      validation_set=({
                          'input': testX
                      }, {
                          'target': testY
                      }),
                      snapshot_step=10,
                      show_metric=True,
                      run_id='convnet_mnist')

            # check for validation monitor variables
            ats = tf.get_collection("Adam_testing_summaries")
            print("ats=%s" % ats)
            self.assertTrue(
                len(ats) == 4
            )  # should be four variables being summarized: [loss, test_var, test_const, accuracy]

            session = model.session
            print("session=%s" % session)
            trainer = model.trainer
            print("train_ops = %s" % trainer.train_ops)
            top = trainer.train_ops[0]
            vmtset = top.validation_monitors_T
            print("validation_monitors_T = %s" % vmtset)
            with model.session.as_default():
                ats_var_val = zqtflearn.variables.get_value(vmtset[0])
                ats_const_val = zqtflearn.variables.get_value(vmtset[1])
            print("summary values: var=%s, const=%s" %
                  (ats_var_val, ats_const_val))
            self.assertTrue(
                ats_const_val ==
                32)  # test to make sure the constant made it through
net = relu(
    batch_normalization(
        conv_2d(net,
                1536,
                1,
                bias=False,
                activation=None,
                name='Conv2d_7b_1x1')))
net = avg_pool_2d(net,
                  net.get_shape().as_list()[1:3],
                  strides=2,
                  padding='VALID',
                  name='AvgPool_1a_8x8')
net = flatten(net)
net = dropout(net, dropout_keep_prob)
loss = fully_connected(net, num_classes, activation='softmax')

network = zqtflearn.regression(loss,
                               optimizer='RMSprop',
                               loss='categorical_crossentropy',
                               learning_rate=0.0001)
model = zqtflearn.DNN(network,
                      checkpoint_path='inception_resnet_v2',
                      max_checkpoints=1,
                      tensorboard_verbose=2,
                      tensorboard_dir="./tflearn_logs/")
model.fit(X,
          Y,
          n_epoch=1000,
          validation_set=0.1,
          shuffle=True,
                  128,
                  4,
                  padding='valid',
                  activation='relu',
                  regularizer="L2")
branch3 = conv_1d(network,
                  128,
                  5,
                  padding='valid',
                  activation='relu',
                  regularizer="L2")
network = merge([branch1, branch2, branch3], mode='concat', axis=1)
network = tf.expand_dims(network, 2)
network = global_max_pool(network)
network = dropout(network, 0.5)
network = fully_connected(network, 2, activation='softmax')
network = regression(network,
                     optimizer='adam',
                     learning_rate=0.001,
                     loss='categorical_crossentropy',
                     name='target')
# Training
model = zqtflearn.DNN(network, tensorboard_verbose=0)
model.fit(trainX,
          trainY,
          n_epoch=5,
          shuffle=True,
          validation_set=(testX, testY),
          show_metric=True,
          batch_size=32)
Ejemplo n.º 6
0
network = conv_2d(network, 256, 3, activation='relu')
network = conv_2d(network, 256, 3, activation='relu')
network = conv_2d(network, 256, 3, activation='relu')
network = max_pool_2d(network, 2, strides=2)

network = conv_2d(network, 512, 3, activation='relu')
network = conv_2d(network, 512, 3, activation='relu')
network = conv_2d(network, 512, 3, activation='relu')
network = max_pool_2d(network, 2, strides=2)

network = conv_2d(network, 512, 3, activation='relu')
network = conv_2d(network, 512, 3, activation='relu')
network = conv_2d(network, 512, 3, activation='relu')
network = max_pool_2d(network, 2, strides=2)

network = fully_connected(network, 4096, activation='relu')
network = dropout(network, 0.5)
network = fully_connected(network, 4096, activation='relu')
network = dropout(network, 0.5)
network = fully_connected(network, 17, activation='softmax')

network = regression(network,
                     optimizer='rmsprop',
                     loss='categorical_crossentropy',
                     learning_rate=0.0001)

# Training
model = zqtflearn.DNN(network,
                      checkpoint_path='model_vgg',
                      max_checkpoints=1,
                      tensorboard_verbose=0)
Ejemplo n.º 7
0
# Data loading and preprocessing
import zqtflearn.datasets.mnist as mnist
X, Y, testX, testY = mnist.load_data(one_hot=True)
X = X.reshape([-1, 28, 28, 1])
testX = testX.reshape([-1, 28, 28, 1])

# Building convolutional network
network = input_data(shape=[None, 28, 28, 1], name='input')
#highway convolutions with pooling and dropout
for i in range(3):
    for j in [3, 2, 1]:
        network = highway_conv_2d(network, 16, j, activation='elu')
    network = max_pool_2d(network, 2)
    network = batch_normalization(network)

network = fully_connected(network, 128, activation='elu')
network = fully_connected(network, 256, activation='elu')
network = fully_connected(network, 10, activation='softmax')
network = regression(network,
                     optimizer='adam',
                     learning_rate=0.01,
                     loss='categorical_crossentropy',
                     name='target')

# Training
model = zqtflearn.DNN(network, tensorboard_verbose=0)
model.fit(X,
          Y,
          n_epoch=20,
          validation_set=(testX, testY),
          show_metric=True,
Ejemplo n.º 8
0
# Real-time data preprocessing
img_prep = ImagePreprocessing()
img_prep.add_featurewise_zero_center()
img_prep.add_featurewise_stdnorm()

# Real-time data augmentation
img_aug = ImageAugmentation()
img_aug.add_random_flip_leftright()
img_aug.add_random_rotation(max_angle=25.)

# Convolutional network building
network = input_data(shape=[None, 32, 32, 3],
                     data_preprocessing=img_prep,
                     data_augmentation=img_aug)
network = conv_2d(network, 32, 3, activation='relu')
network = max_pool_2d(network, 2)
network = conv_2d(network, 64, 3, activation='relu')
network = conv_2d(network, 64, 3, activation='relu')
network = max_pool_2d(network, 2)
network = fully_connected(network, 512, activation='relu')
network = dropout(network, 0.5)
network = fully_connected(network, 10, activation='softmax')
network = regression(network, optimizer='adam',
                     loss='categorical_crossentropy',
                     learning_rate=0.001)

# Train using classifier
model = zqtflearn.DNN(network, tensorboard_verbose=0)
model.fit(X, Y, n_epoch=50, shuffle=True, validation_set=(X_test, Y_test),
          show_metric=True, batch_size=96, run_id='cifar10_cnn')
from zqtflearn.layers.embedding_ops import embedding
from zqtflearn.layers.recurrent import bidirectional_rnn, BasicLSTMCell
from zqtflearn.layers.estimator import regression

# IMDB Dataset loading
train, test, _ = imdb.load_data(path='imdb.pkl',
                                n_words=10000,
                                valid_portion=0.1)
trainX, trainY = train
testX, testY = test

# Data preprocessing
# Sequence padding
trainX = pad_sequences(trainX, maxlen=200, value=0.)
testX = pad_sequences(testX, maxlen=200, value=0.)
# Converting labels to binary vectors
trainY = to_categorical(trainY)
testY = to_categorical(testY)

# Network building
net = input_data(shape=[None, 200])
net = embedding(net, input_dim=20000, output_dim=128)
net = bidirectional_rnn(net, BasicLSTMCell(128), BasicLSTMCell(128))
net = dropout(net, 0.5)
net = fully_connected(net, 2, activation='softmax')
net = regression(net, optimizer='adam', loss='categorical_crossentropy')

# Training
model = zqtflearn.DNN(net, clip_gradients=0., tensorboard_verbose=2)
model.fit(trainX, trainY, validation_set=0.1, show_metric=True, batch_size=64)
Ejemplo n.º 10
0
                       activation='relu',
                       name='block5_conv2')
block5_conv3 = conv_2d(block5_conv2,
                       512,
                       3,
                       activation='relu',
                       name='block5_conv3')
block5_conv4 = conv_2d(block5_conv3,
                       512,
                       3,
                       activation='relu',
                       name='block5_conv4')
block4_pool = max_pool_2d(block5_conv4, 2, strides=2, name='block4_pool')
flatten_layer = zqtflearn.layers.core.flatten(block4_pool, name='Flatten')

fc1 = fully_connected(flatten_layer, 4096, activation='relu')
dp1 = dropout(fc1, 0.5)
fc2 = fully_connected(dp1, 4096, activation='relu')
dp2 = dropout(fc2, 0.5)

network = fully_connected(dp2, 1000, activation='rmsprop')

regression = zqtflearn.regression(network,
                                  optimizer='adam',
                                  loss='categorical_crossentropy',
                                  learning_rate=0.001)

model = zqtflearn.DNN(regression,
                      checkpoint_path='vgg19',
                      tensorboard_dir="./logs")
Ejemplo n.º 11
0
                                name='inception_5b_pool')
inception_5b_pool_1_1 = conv_2d(inception_5b_pool,
                                128,
                                filter_size=1,
                                activation='relu',
                                name='inception_5b_pool_1_1')
inception_5b_output = merge([
    inception_5b_1_1, inception_5b_3_3, inception_5b_5_5, inception_5b_pool_1_1
],
                            axis=3,
                            mode='concat')
pool5_7_7 = avg_pool_2d(inception_5b_output, kernel_size=7, strides=1)
pool5_7_7 = dropout(pool5_7_7, 0.4)

# fc
loss = fully_connected(pool5_7_7, 17, activation='softmax')
network = regression(loss,
                     optimizer='momentum',
                     loss='categorical_crossentropy',
                     learning_rate=0.001)

# to train
model = zqtflearn.DNN(network,
                      checkpoint_path='model_googlenet',
                      max_checkpoints=1,
                      tensorboard_verbose=2)

model.fit(X,
          Y,
          n_epoch=1000,
          validation_set=0.1,