Example #1
0
def test_plot():

    # create test cells
    test_cell1 = Cell()
    test_cell1.add_surface(Circle(0, 0, 2), False)  # inside a circle (r = 2)
    test_cell1.add_surface(Rectangle(0, 0, 0.5, 0.5),
                           True)  # outside a square (l = 1)

    test_cell2 = Cell()
    test_cell2.add_surface(Circle(1, 1, 2), True)  # outside a circle
    test_cell2.add_surface(Circle(0, 0, 4), False)  # inside a larger circle

    test_cell3 = Cell()
    test_cell3.add_surface(Rectangle(0, 0, 2, 2), False)  # inside a rectangle
    test_cell3.add_surface(Circle(0, 0, 1), True)  # outside a circle

    test_cell4 = Cell()
    test_cell4.add_surface(Rectangle(0, 0, 5, 5), False)
    test_cell4.add_surface(Rectangle(0, 0, 3, 3), True)

    # call simple_plot or plot
    simple_plot(test_cell1, 0)
    simple_plot(test_cell2, 0)
    simple_plot(test_cell3, 0)
    simple_plot(test_cell4, 0)

    plot(test_cell1, 0, -5, 10, -5, 5, 0.1)
Example #2
0
def test_plot():

    # create test cells
    test_cell1 = Cell()
    test_cell1.add_surface(Circle(0,0,2), False) # inside a circle (r = 2)
    test_cell1.add_surface(Rectangle(0, 0, 0.5, 0.5), True) # outside a square (l = 1)

    test_cell2 = Cell()
    test_cell2.add_surface(Circle(1,1,2), True) # outside a circle
    test_cell2.add_surface(Circle(0,0,4), False) # inside a larger circle

    test_cell3 = Cell()
    test_cell3.add_surface(Rectangle(0,0,2,2), False) # inside a rectangle
    test_cell3.add_surface(Circle(0,0,1), True) # outside a circle

    test_cell4 = Cell()
    test_cell4.add_surface(Rectangle(0,0,5,5),False)
    test_cell4.add_surface(Rectangle(0,0,3,3), True)

    # call simple_plot or plot
    simple_plot(test_cell1, 0)
    simple_plot(test_cell2, 0)
    simple_plot(test_cell3, 0)
    simple_plot(test_cell4, 0)

    plot(test_cell1, 0, -5, 10, -5, 5, 0.1)
Example #3
0
def train_weights(matrix,
                  weights,
                  nb_epoch=10,
                  l_rate=1.00,
                  stop_early=True,
                  verbose=False,
                  do_plot=False):
    for epoch in range(nb_epoch):  #epoch

        for i in range(len(matrix)):
            prediction = predict(matrix[i][:-1],
                                 weights)  # get predicted classificaion
            error = matrix[i][
                -1] - prediction  # get error from real classification
            if verbose:
                sys.stdout.write("Training on data at index %d...\n" % (i))
            for j in range(len(weights)):  # calculate new weight for each node
                if verbose:
                    sys.stdout.write("\tWeight[%d]: %0.5f --> " %
                                     (j, weights[j]))
                weights[j] = weights[j] + (l_rate * error * matrix[i][j])
                if verbose: sys.stdout.write("%0.5f\n" % (weights[j]))

        cur_acc = accuracy(matrix, weights)
        print("\nEpoch %d \nWeights: " % epoch, weights)
        print("Accuracy: ", cur_acc)

        if do_plot:
            plot(matrix=matrix, weights=weights, title="Epoch %d" % epoch)

        if cur_acc == 1.0 and stop_early: break

    return weights
Example #4
0
    def train_model_unsupervised(self, x, y, num_epochs):
        print("Unsupervised Training")
        logging.info("Unsupervised Training")
        for epoch in range(num_epochs):
            x, y = shuffle(x=x, y=y)
            for i in range(int(len(x) / self.args.batch_size)):
                x_l, y_l, _ = sample_minibatch_deterministically(x, y, batch_i=i, batch_size=self.args.batch_size)

                labels_onehot = torch.zeros([y_l.size(0), self.num_classes])
                labels_onehot.scatter_(1, y_l.unsqueeze(1).long(), 1)
                out = x_l
                # Forward + Backward + Optimize
                for (optimizer, forward) in zip(self.net.optimizers, self.net.forwards):
                    if self.conditioned:
                        out = self.optimizer_module(optimizer, forward, out, labels_onehot)
                    else:
                        out = self.optimizer_module(optimizer, forward, out)

            if (epoch+1) % 1 == 0:
                perf = self.test_model(epoch+1)
                if perf > self.best_perf:
                    torch.save(self.net.state_dict(), self.model_name+'_model_best.pkl')
                    self.net.train()

        # Save the Model ans Stats
        pkl.dump(self.stats, open(self.model_name+'_stats.pkl', 'wb'))
        torch.save(self.net.state_dict(), self.model_name+'_model.pkl')
        if self.plot:
            plot(self.stats, name=self.model_name)
Example #5
0
def voxelRand(times, speed):
    speed = speed / 5
    voxels = []

    #plot random points to fill the cube
    for t in range(times):
        vX = randint(0, 3)
        vY = randint(0, 3)
        vZ = randint(0, 3)
        plot(vX, vY, vZ, 1)
        sleep(speed)

    fullcube()
    sleep(speed * 2)

    #plot random points to empty the cube
    for t in range(times):
        vX = randint(0, 3)
        vY = randint(0, 3)
        vZ = randint(0, 3)
        plot(vX, vY, vZ, 0)
        sleep(speed)

    #smoothly erase any remaining points
    plotFill(0, 3, 0, 3, 3, 3, 0)
    sleep(speed * 2)

    plotFill(0, 2, 0, 3, 2, 3, 0)
    sleep(speed * 2)

    plotFill(0, 1, 0, 3, 1, 3, 0)
    sleep(speed * 2)
    fullcube(0)

    sleep(speed)
Example #6
0
def exec(point_x, point_y, t_param):
    sigma = [0.01 * i for i in range(100)]
    kcr = [KCR([point_x, point_y], t_param, sigmai) for sigmai in sigma]
    lsm_B_list = []
    lsm_D_list = []
    mle_B_list = []
    mle_D_list = []
    for si in sigma:
        # print(len(x))
        #円フィッティング

        n = 500
        params_lsm = []
        params_mle = []

        for i in range(n):
            x, y = setErrND([point_x, point_y], si)
            p = np.random.normal(size=param.shape)
            p = p / np.linalg.norm(p)
            params_lsm.append(LSM([x, y]))
            params_mle.append(MLE([x, y], p, ep=1.0e-6))
        # print(params_lsm)
        lsm_B, lsm_D = BE(params_lsm, t_param, n)
        mle_B, mle_D = BE(params_mle, t_param, n)
        lsm_B_list.append(lsm_B)
        lsm_D_list.append(lsm_D)
        mle_B_list.append(mle_B)
        mle_D_list.append(mle_D)

    # viewErrGraph(kcr, [lsm_B_list, mle_B_list], [lsm_D_list, mle_D_list], sigma)
    plot(sigma, lsm_D_list, mle_D_list, kcr, lsm_B_list, mle_B_list)
Example #7
0
    def train_model_supervised(self, x, y, num_epochs):
        print("Supervised Training")
        logging.info("Supervised Training")
        for epoch in range(num_epochs):
            x, y = shuffle(x=x, y=y)
            # for i, (images, labels) in enumerate(self.train_loader):
            for i in range(int(len(x) / self.args.batch_size)):
                # Convert torch tensor to Variable

                x_l, y_l, _ = sample_minibatch_deterministically(x, y, batch_i=i, batch_size=self.args.batch_size)

                labels_onehot = torch.zeros([y_l.size(0), self.num_classes])
                labels_onehot.scatter_(1, y_l.long().unsqueeze(1), 1)
                # Forward + Backward + Optimize
                loss, grad_loss = self.optimize_grad_and_net(x_l, y_l.long(), labels_onehot,
                                          self.net.grad_optimizer, self.net.optimizer, self.net)

                if (i+1) % 10 == 0:
                    print ('Epoch [%d/%d], Step [%d/%d], Loss: %.6f, Grad Loss: %.8f'
                         %(epoch+1, self.num_epochs, i+1, len(x)//self.batch_size, loss.item(), grad_loss.item()))

                    logging.info('Epoch [%d/%d], Step [%d/%d], Loss: %.6f, Grad Loss: %.8f'
                         %(epoch+1, self.num_epochs, i+1, len(x)//self.batch_size, loss.item(), grad_loss.item()))

            if (epoch + 1) % 10 == 0:
                perf = self.test_model(epoch + 1)
                if perf > self.best_perf:
                    torch.save(self.net.state_dict(), self.model_name + '_model_best.pkl')
                    self.net.train()

        # Save the Model ans Stats
        pkl.dump(self.stats, open(self.model_name + '_stats.pkl', 'wb'))
        torch.save(self.net.state_dict(), self.model_name + '_model.pkl')
        if self.plot:
            plot(self.stats, name=self.model_name)
Example #8
0
def wireframe(time, size, xF=0, yF=0, zF=0):
    fullcube(0)
    if size == 4:
        #if the cube is size 4, it fills the whole LED cube and thus can ignore
        #   the start point (xF, yF, zF)

        #fill cube, then cut out inner sections
        fullcube()
        plotFill(1, 0, 1, 2, 3, 2, 0)
        plotFill(1, 1, 0, 2, 2, 3, 0)
        plotFill(0, 1, 1, 3, 2, 2, 0)

    elif size == 3:
        #if the cube is smaller than size 4, plot cube relative to (xF, yF, zF)
        plotFill(xF, yF, zF, xF + 2, yF + 2, zF + 2)
        plotFill(xF + 1, yF, zF + 1, xF + 1, yF + 2, zF + 1, 0)
        plotFill(xF + 1, yF + 1, zF, xF + 1, yF + 1, zF + 2, 0)
        plotFill(xF, yF + 1, zF + 1, xF + 2, yF + 1, zF + 1, 0)

    elif size == 2:
        plotFill(xF, yF, zF, xF + 1, yF + 1, zF + 1)

    elif size == 1:
        plot(xF, yF, zF)

    sleep(time)
Example #9
0
def testSurface():
    S1 = Surface(0, 0, 0, 3, 0, -3) # XPlane(1)
    S2 = Surface(0, 0, 0, 0, 2, 1)  # YPlane(-0.5)
    S3 = Surface(0, 0, 0, 1, 1, 0)  # angled plane
    S4 = Surface(1, 2, 0, 0, 0, -3)  # ellipse!!

    cell = Cell()
    cell.add_surface(S4, True)
    simple_plot(cell, 0)
    plot(cell, 0, -2, 2, -2, 2, 0.1)
Example #10
0
def testSurface():
    S1 = Surface(0, 0, 0, 3, 0, -3)  # XPlane(1)
    S2 = Surface(0, 0, 0, 0, 2, 1)  # YPlane(-0.5)
    S3 = Surface(0, 0, 0, 1, 1, 0)  # angled plane
    S4 = Surface(1, 2, 0, 0, 0, -3)  # ellipse!!

    cell = Cell()
    cell.add_surface(S4, True)
    simple_plot(cell, 0)
    plot(cell, 0, -2, 2, -2, 2, 0.1)
Example #11
0
def doCluster1(r):
    L = 100
    #r = rand(L,L)
    p = 0.4
    z = r < p

    #print(r)

    figure(figsize=(16, 5))
    subplot(1, 3, 1)
    a = imshow(z, origin='lower', interpolation='nearest')
    colorbar()
    title("Matrix")

    # Show image of labeled clusters (shuffled)
    lw, num = measurements.label(z)
    subplot(1, 3, 2)
    b = arange(lw.max() +
               1)  # create an array of values from 0 to lw.max() + 1
    shuffle(b)  # shuffle this array
    shuffledLw = b[lw]  # replace all values with values from b
    b = imshow(shuffledLw, origin='lower', interpolation='nearest'
               )  # show image clusters as labeled by a shuffled lw
    colorbar()
    title("Labeled clusters")

    # Calculate areas
    subplot(1, 3, 3)
    area = measurements.sum(z, lw, index=arange(lw.max() + 1))
    areaImg = area[lw]
    im3 = imshow(areaImg, origin='lower', interpolation='nearest')
    colorbar()
    title("Clusters by area")

    # Bounding box
    sliced = measurements.find_objects(areaImg == areaImg.max())
    if (len(sliced) > 0):
        sliceX = sliced[0][1]
        sliceY = sliced[0][0]
        plotxlim = im3.axes.get_xlim()
        plotylim = im3.axes.get_ylim()
        plot([
            sliceX.start, sliceX.start, sliceX.stop, sliceX.stop, sliceX.start
        ], [
            sliceY.start, sliceY.stop, sliceY.stop, sliceY.start, sliceY.start
        ],
             color="red")
        xlim(plotxlim)
        ylim(plotylim)

    show()
    plt.savefig(a)
    plt.savefig(b)
    plt.savefig(im3)
Example #12
0
def main_functions():
    inputData = input()
    m1 = inputData.get('m1')
    m2 = inputData.get('m2')
    L1 = inputData.get('L1')
    L2 = inputData.get('L2')
    theta1 = inputData.get('theta1')
    theta2 = inputData.get('theta2')
    g = inputData.get('g')
    t = inputData.get('t')
    temp = ODE(theta1, theta2, m1, m2, L1, L2, g, t)
    output(temp[0], temp[1], temp[2])
    plot(temp[0], temp[1], temp[2])
Example #13
0
def voxelSend(times, speed):
    #fill the top and bottom layers
    plotFill(0, 0, 0, 3, 0, 3)
    plotFill(0, 3, 0, 3, 3, 3)
    sleep(speed)

    for t in range(times):
        #select a new point
        vX = randint(0, 3)
        vY = randint(0, 1) * 3
        vZ = randint(0, 3)

        #send it up or down the cube, depending on its starting y-position
        for n in range(0, 4):
            if vY == 0:
                if n > 0:
                    plot(vX, n - 1, vZ, 0)
                plot(vX, n, vZ)

            elif vY == 3:
                if n > 0:
                    plot(vX, (3 - n) + 1, vZ, 0)
                plot(vX, (3 - n), vZ)

            sleep(speed)
def split(X, Y, x_to_classify, name, call_plot, key):

    # Iterations
    if iteration:
        perform_iteration(X, Y, 100, x_to_classify, name)
        return

    # 70/30 split for training and testing data,
    X_train, X_test, Y_train, Y_test = train_test_split(X, Y, random_state=42,
                                                        test_size=0.3, stratify=Y)

    # Visualise the Training Data On all features, not on some features
    if call_plot:
        plot(X_train, Y_train, name, key)
    models(X_train, X_test, Y_train, Y_test, x_to_classify, name, key)
    def train_model(self):
        for epoch in range(self.num_epochs):
            for i, (images, labels) in enumerate(self.train_loader):
                # Convert torch tensor to Variable
                labels_onehot = torch.zeros([labels.size(0), self.num_classes])
                labels_onehot.scatter_(1, labels.unsqueeze(1), 1)
                # TODO: gpu based
                # images = Variable(images).cuda()
                # labels = Variable(labels).cuda()
                # labels_onehot = Variable(labels_onehot).cuda()
                images = Variable(images)
                labels = Variable(labels)
                labels_onehot = Variable(labels_onehot)
                out = images
                # Forward + Backward + Optimize
                for (optimizer, forward) in zip(self.net.optimizers,
                                                self.net.forwards):
                    if self.conditioned:
                        out = self.optimizer_module(optimizer, forward, out,
                                                    labels_onehot)
                    else:
                        out = self.optimizer_module(optimizer, forward, out)
                # synthetic model
                # Forward + Backward + Optimize
                loss, grad_loss = self.optimizer_dni_module(
                    images, labels, labels_onehot, self.net.grad_optimizer,
                    self.net.optimizer, self.net)

                # show training loss
                if (i + 1) % 10 == 0:
                    print(
                        'Epoch [%d/%d], Step [%d/%d], Loss: %.4f, Grad Loss: %.4f'
                        % (epoch + 1, self.num_epochs, i + 1, self.num_train //
                           self.batch_size, loss.data[0], grad_loss.data[0]))

            # save test result
            if (epoch + 1) % 10 == 0:
                perf = self.test_model(epoch + 1)
                if perf > self.best_perf:
                    torch.save(self.net.state_dict(),
                               self.model_name + '_model_best.pkl')
                    self.net.train()

        # Save the Model ans Stats
        pkl.dump(self.stats, open(self.model_name + '_stats.pkl', 'wb'))
        torch.save(self.net.state_dict(), self.model_name + '_model.pkl')
        if self.plot:
            plot(self.stats, name=self.model_name)
Example #16
0
    def train_model_supervised(self, x, y, num_epochs):
        for epoch in range(num_epochs):
            x, y = shuffle(x=x, y=y)
            for i in range(int(len(x) / self.args.batch_size)):

                x_l, y_l, _ = sample_minibatch_deterministically(
                    x, y, batch_i=i, batch_size=self.args.batch_size)

                labels_onehot = torch.zeros([y_l.size(0), self.num_classes])
                labels_onehot.scatter_(1, y_l.long().unsqueeze(1), 1)
                out = x_l

                for (optimizer, forward) in zip(self.net.optimizers,
                                                self.net.forwards):
                    if self.conditioned:
                        out = self.optimizer_module(optimizer, forward, out,
                                                    labels_onehot)
                    else:
                        out = self.optimizer_module(optimizer, forward, out)
                # synthetic model
                # Forward + Backward + Optimize
                loss, grad_loss = self.optimizer_dni_module(
                    x_l, y_l.long(), labels_onehot, self.net.grad_optimizer,
                    self.net.optimizer, self.net)

                if (i + 1) % 10 == 0:
                    print(
                        'Epoch [%d/%d], Step [%d/%d], Loss: %.6f, Grad Loss: %.8f'
                        % (epoch + 1, self.num_epochs, i + 1, len(x) //
                           self.batch_size, loss.item(), grad_loss.item()))

                    logging.info(
                        'Epoch [%d/%d], Step [%d/%d], Loss: %.6f, Grad Loss: %.8f'
                        % (epoch + 1, self.num_epochs, i + 1, len(x) //
                           self.batch_size, loss.item(), grad_loss.item()))

            if (epoch + 1) % 10 == 0:
                perf = self.test_model(epoch + 1)
                if perf > self.best_perf:
                    torch.save(self.net.state_dict(),
                               self.model_name + '_model_best.pkl')
                    self.net.train()

        # Save the Model ans Stats
        pkl.dump(self.stats, open(self.model_name + '_stats.pkl', 'wb'))
        torch.save(self.net.state_dict(), self.model_name + '_model.pkl')
        if self.plot:
            plot(self.stats, name=self.model_name)
Example #17
0
def plot_input(year,feature,country):
    a=1
    size=len(feature)
    feature_plot_list=[]
    for item in range(size):
        feature_df= pd.read_csv('./data/alldata/'+feature[item]+'.csv').drop('Unnamed: 0',axis=1)
        #read in all the user-required features csv files and convert them to dataframe
        feature_df = feature_df.set_index(feature_df['Year']).drop(['Year'],axis=1)
        feature_plot_list.append(plot(feature_df,country,year))
        #use plot class for all the dataframes and combine all the plot objects into a list
    try:
        while(a==1):
            print('you could choose plot types below:')
            print('1,time_series_plot 2,barplot\n3,scatter_plot 4,histogram\n5,boxplot_year 6,boxplot_country\n7,heatmap 8,choropleth\n9,pie_plot\nEnter Q to quit and Enter R to return to previous menu')
            plot_type = input('Please select a plot type')
            if plot_type.isdigit():
                option=int(plot_type)
            elif plot_type=='Q':
                sys.exit(1)
            elif plot_type=='R':
                a=0
                break
            else:
                raise InputError
            #choose different plots
            if option==1:
                for dplot in feature_plot_list:
                    dplot.time_series_plot()
            if option==2:
                for dplot in feature_plot_list:
                    dplot.bar_plot()
            if option==3:
                for dplot in feature_plot_list:
                    dplot.scatter_plot()
            if option==4:
                for dplot in feature_plot_list:
                    dplot.histogram()
            if option==5:
                for dplot in feature_plot_list:
                    dplot.boxplot_year()
            if option==6:
                for dplot in feature_plot_list:
                    dplot.boxplot_country()
            if option==7:
                for dplot in feature_plot_list:
                    dplot.heatmap()
            if option==8:
                for dplot in feature_plot_list:
                    dplot.choropleth()
            if option==9:
                for dplot in feature_plot_list:
                    dplot.pie_chart()
            #for different option, the system return different type of plot
    except InputError:
        print('Invalid input option')
    except KeyboardInterrupt:
        sys.exit(1)
    except EOFError:
        sys.exit(1)
    return a
Example #18
0
def enduranceMapMesh():
    result = run()
    """result = sphere(500,10)
    result = list(result)
    result.sort()
    xyz = reduce(fold_tuple_helper,result, [[],[],[]])"""

    x = map(mapping, result)
    y = map(mapping2, result)
    z = zip(x,y) 
    filt = filter(lambda x: x[1]<3650, z)
    filt = filter(lambda x: x[1]>3610,filt)
    filt = map(list,zip(*filt))
    x = filt[0]
    y = filt[1]
    #plot_cool(result[0],result[1],[0]*len(x))
    plot(x,y,[0]*len(x))
def generatePlotForVirusValueHistogram(last_term, interval):
    n = last_term / interval
    for i in range(n):
        out((i + 1) * interval)
        plot((i + 1) * interval)
    fhtml = open('VirusDataBase/' + 'index.html', 'w')
    outputLine(
        fhtml, '<html><link rel="stylesheet" href="%s">' % CSS_DIR +
        '<body><font color=gray><code>')
    outputHeader(fhtml, '<font color=black># RESULT</font>', 1)

    # Image Section
    for i in range(n):
        setImage(fhtml, 400, '%d_vvd.png' % ((i + 1) * interval))

    # End
    outputLine(fhtml, '</code></body></html>')
Example #20
0
    def on_enter(self):
        try:
            grouplist = []
            #TODO get cyclelength from user
            cyclelength = 1
            for x in xrange(0, len(self.manager.groupList)):
                grouplist.append(self.manager.groupList[x].name)
                print(
                    "this is the number of slots " + str(
                        len(self.manager.edit_timeline_screen.ids.glayout3.
                            children)))
                self.test_send(x + 1)
            plot(cyclelength,
                 len(self.manager.edit_timeline_screen.ids.glayout3.children),
                 grouplist)

        except IndexError:
            print('No slots created!')
Example #21
0
def rain(snow=False, times=1, speed=0.075):
    speed = speed / 2
    drops = []

    for t in range(times):
        #create a new drop
        rX = randint(0, 3)
        rZ = randint(0, 3)
        drops.append([rX, 3, rZ])

        #for each raindrop
        for d in drops:
            #move the drop down one voxel, and erase its old position
            if d[1] < 3:
                plot(d[0], d[1] + 1, d[2], 0)
            plot(d[0], d[1], d[2])
            sleep(speed)

            #if it hits the ground, stop updating it
            if d[1] == 0:
                if not snow == True and not snow == "snow":
                    plot(d[0], d[1], d[2], 0)
                drops.remove(d)
            d[1] -= 1

        sleep(speed)
Example #22
0
def main(argv=None):
    
    # Lectura de archivo
    f = open('../../data/iris.data', 'r')
    lines = f.readlines()
    f.close()
    
    dataset = read_data()
    
    choice = ''
    while choice != 4:
        choice = input('1. Plot data\n2. PCA analysis\n3. Fisher\n4. Exit\n')
        if choice == 1:
            plot(dataset)
        elif choice == 2:
            pca(dataset)
        elif choice == 3:
            fischer(dataset)       
        elif choice == 4:
            return
        else:
            print('Invalid input. Try again.')        
Example #23
0
 def onPressInt(self):
     self.InputLower = float(self.InputLowerRaw.get())
     self.InputUpper = float(self.InputUpperRaw.get())
     self.InputFunc = str(self.InputFuncRaw.get())
     if len(self.InputFunc) == 0:
         messagebox.showwarning(
             "Fejl",
             "Det indtastede tal, skal være enten et tal eller decimaltal (brug punktum ikke komma)"
         )
     else:
         self.objectInt = integralregning(self.InputFunc, self.InputLower,
                                          self.InputUpper, 1000)
         self.objectInt.integral()
         plotObjectInt = plot(self.objectInt, self.InputLower,
                              self.InputUpper)
         plotObjectInt.plotIntegral()
Example #24
0
 def onPressDiff(self):
     self.InputLower = float(self.InputLowerRaw.get())
     self.InputUpper = float(self.InputUpperRaw.get())
     self.InputFunc = str(self.InputFuncRaw.get())
     if len(self.InputFunc) == 0:
         messagebox.showwarning(
             "Fejl",
             "Det indtastede tal, skal være enten et tal eller decimaltal (brug punktum ikke komma)"
         )
     else:
         self.objectDiff = Diff(self.InputFunc, self.InputLower,
                                self.InputUpper)
         # Vælg en af de to til test underneden. Så COMMENT den du ikke bruger.
         self.objectDiff.Differentialudregner()
         # self.objectDiff.slopeFunction()
         plotObjectDiff = plot(self.objectDiff, self.InputLower,
                               self.InputUpper)
         plotObjectDiff.plotDifferential()
Example #25
0
        # Best, random ans worst case of each algorithm.
        if (j == 0):
            dimensions = [i for i in range(0, 1000)]
        if (j == 1):
            dimensions = [rnd.randint(0, 1000) for i in range(1000)]
        if (j == 2):
            dimensions = [i for i in range(1000, 0, -1)]
        printer_1(dimensions, j)
        # Sort the list dimensions.
        for i in range(2, len(dimensions) + 1):
            if (ans == 1):
                algorithm = Heapsort(dimensions[:i])
                sort = algorithm.heapsort()
            if (ans == 2):
                algorithm = Cocktail(dimensions[:i], 0,
                                     len(dimensions[:i]) - 1)
                sort = algorithm.cocktail()
            if (ans == 3):
                algorithm = Shell(dimensions[:i])
                sort = algorithm.shellsort()
            if (j == 0):
                gb.parameters_1.append((len(dimensions[:i]), gb.time))
            if (j == 1):
                gb.parameters_2.append((len(dimensions[:i]), gb.time))
            if (j == 2):
                gb.parameters_3.append((len(dimensions[:i]), gb.time))
            gb.time = 0
        j = j + 1
        printer_2(sort)
    plot(ans)
 def plot(self, tg, varargin):
     return plot(self, tg, varargin)
#!/usr/bin/env python
# -*- coding: UTF-8 -*-

import logging
from plot import *
from cluster import *


def plot(data, density_threshold, distance_threshold, auto_select_dc=False):
    logging.basicConfig(format="%(asctime)s : %(levelname)s : %(message)s", level=logging.INFO)
    dpcluster = DensityPeakCluster()
    rho, delta, nneigh = dpcluster.cluster(
        load_paperdata, data, density_threshold, distance_threshold, auto_select_dc=auto_select_dc
    )
    logger.info(str(len(dpcluster.ccenter)) + " center as below")
    for idx, center in dpcluster.ccenter.items():
        logger.info("%d %f %f" % (idx, rho[center], delta[center]))
    plot_rho_delta(rho, delta)  # plot to choose the threthold
    plot_rhodelta_rho(rho, delta)
    plot_cluster(dpcluster)


if __name__ == "__main__":
    plot("./data/data_in_paper/example_distances.dat", 20, 0.1, False)
    # plot('./data/data_others/spiral_distance.dat',8,5,False)
    # plot('./data/data_others/aggregation_distance.dat',15,4.5,False)
    # plot('./data/data_others/flame_distance.dat',4,7,False)
    # plot('./data/data_others/jain_distance.dat',12,10,False)
Example #28
0

def plot(data, density_threshold, distance_threshold, auto_select_dc=False):
    logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s',
                        level=logging.INFO)
    dpcluster = DensityPeakCluster()
    rho, delta, nneigh = dpcluster.cluster(load_paperdata,
                                           data,
                                           density_threshold,
                                           distance_threshold,
                                           auto_select_dc=auto_select_dc)

    logger.info(str(len(dpcluster.ccenter)) + ' center as below')
    for idx, center in dpcluster.ccenter.items():
        logger.info('%d %f %f' % (idx, rho[center], delta[center]))
    plot_rho_delta(rho, delta)  # plot to choose the threthold
    # plot_rhodelta_rho(rho,delta)
    plot_cluster(dpcluster)
    print(dpcluster.ccenter)


if __name__ == '__main__':
    # plot('./data/data_in_paper/example_distances.dat', 20, 0.1,False)
    plot('./data/data_others/spiral_distance.dat', 8, 5, False)
    # plot('./data/data_others/aggregation_distance.dat',15,4.5,False)
    #plot('./data/data_others/flame_distance.dat',4,4,False)
    #plot('./data/data_others/jain_distance.dat', 2, 6, False)
    #plot('./data/data_others/iris.forcluster',45, 0.95,True)
    #plot('./data/data_in_paper/example_distances.dat', 20, 0.2)
    #plot('./data/data_iris_flower/iris.forcluster',47, 0.9, auto_select_dc=False)
from cluster import *


def plot(data, auto_select_dc=False):
    logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s',
                        level=logging.INFO)
    dpcluster = DensityPeakCluster()
    distances, max_dis, min_dis, max_id, rho, rc = dpcluster.local_density(
        load_paperdata, data, auto_select_dc=auto_select_dc)
    delta, nneigh = min_distance(max_id, max_dis, distances, rho)
    plot_rho_delta(rho, delta)  # plot to choose the threthold


if __name__ == '__main__':
    # plot('./data/data_in_paper/example_distances.dat')
    # plot('./data/data_others/spiral_distance.dat')
    # plot('./data/data_others/aggregation_distance.dat')
    # plot('./data/data_others/flame_distance.dat')
    # plot('./data/data_others/jain_distance.dat')
    # plot('./data/data_others/test_distance.dat')

    # plot('./data/data_others/feature/features_distance.dat')
    # plot('./data/data_others/feature/features_consine_distance.dat')
    # plot('./data/data_others/feature/features_pearson_distance.dat')

    # plot('./data/data_others/normal_distance.dat')
    # plot('./data/data_others/sexy_distance.dat')
    # plot('./data/data_others/pulp_distance.dat')

    plot('./data/data_others/sexy_1000_distance.dat')
#!/usr/bin/env python
# -*- coding: UTF-8 -*-

import logging
from plot import *
from cluster import *


def plot(data):
    logging.basicConfig(format="%(asctime)s : %(levelname)s : %(message)s", level=logging.INFO)
    dpcluster = DensityPeakCluster()
    distances, max_dis, min_dis, max_id, rho = dpcluster.local_density(load_paperdata, data)
    delta, nneigh = min_distance(max_id, max_dis, distances, rho)
    plot_rho_delta(rho, delta)  # plot to choose the threthold


if __name__ == "__main__":
    plot("./data/data_in_paper/example_distances.dat")
Example #31
0
def plot_single(ddir, species, roc_dir, format = "pdf"):
    of = tempfile.NamedTemporaryFile()
    plotfn = "%s/%s/%s" % (ddir, roc_dir, species)
    fn1 = "%s/%s/%s.full" % (ddir, roc_dir, species)
    fn2 = "%s/%s/%s.naive" % (ddir, roc_dir, species)
    fn3 = "%s/%s/%s.blast" % (ddir, roc_dir, species)
    fn4 = "%s/%s/%s.gtg" % (ddir, roc_dir, species)
    fn5 = "%s/%s/%s.blasttree" % (ddir, roc_dir, species)
    fn6 = "%s/%s/%s.gtgtree" % (ddir, roc_dir, species)

    of.write(plot.plot_format(plotfn, format))
    of.write("""
full = read.table("%s")
naive = read.table("%s")
blast = read.table("%s")
gtg = read.table("%s")
btree = read.table("%s")
gtree = read.table("%s")
plot(full[,2], full[,3], type="l", xlab="False positive rate", ylab="True positive rate")
lines(naive[,2], naive[,3], type="l", pch=22, lty=1, col="red")
lines(blast[,2], blast[,3], type="l", pch=22, lty=2, col="blue")
lines(gtg[,2], gtg[,3], type="l", pch=22, lty=2, col="green")
lines(btree[,2], btree[,3], type="l", pch=22, lty=1, col="purple")
lines(gtree[,2], gtree[,3], type="l", pch=22, lty=1, col="orange")
lines(c(0,1), c(0,1))

legend("bottomright", c("Full","Naive","BLAST","GTG", "BlastTree", "GTGTree"), cex=0.8, col=c("black","red","blue","green","purple","orange"), pch=c(21,21,21,21,21,21), lty=c(1,1,2,2,1,1), inset=0.01)
dev.off()
""" % (fn1, fn2, fn3, fn4, fn5, fn6))

    plotfn2 = "%s/%s/%s-F1" % (ddir, roc_dir, species)
    of.write(plot.plot_format(plotfn2, format))
    of.write("""

plot(full[3:nrow(full)-1,1], full[3:nrow(full)-1,4], type="l", ylim=c(0,1), xlab="Normalized score", ylab="")

lines(naive[3:nrow(naive)-1,1], naive[3:nrow(naive)-1,4], col="red", lty=1)
lines(blast[3:nrow(blast)-1,1] / max(blast[,1]), blast[3:nrow(blast)-1,4], col="blue", lty=2)
lines(gtg[3:nrow(gtg)-1,1], gtg[3:nrow(gtg)-1,4], col="green", lty=2)
lines(btree[3:nrow(btree)-1,1], btree[3:nrow(btree)-1,4], col="purple", lty=1)
lines(gtree[3:nrow(gtree)-1,1], gtree[3:nrow(gtree)-1,4], col="orange", lty=1)

legend("bottomleft", c("Full","Naive","BLAST","GTG","BlastTree","GTGTree"), cex=0.8, col=c("black","red","blue","green","purple","orange"), pch=c(21,21,21,21,21,21), lty=c(1,1,2,2,1,1), inset=0.01)
dev.off()
""")

#par(mfrow=c(2,2), oma=c(2, 0, 3, 0), omi=c(0, 0, 0.8, 0))
# plot(naive[3:nrow(naive)-1,1], naive[3:nrow(naive)-1,4], ylim=c(0,1), type="l", xlab="Posterior probability, naive model", ylab="F1 score")
# plot(blast[3:nrow(blast)-1,1] / max(blast[,1]), blast[3:nrow(blast)-1,4], ylim=c(0,1), type="l", xlab="BLAST score", ylab="F1 score")
# plot(gtg[3:nrow(gtg)-1,1], gtg[3:nrow(gtg)-1,4], ylim=c(0,1), type="l", xlab="GTG score", ylab="F1 score")

    plotfn3 = "%s/%s/%s-sens" % (ddir, roc_dir, species)
    of.write(plot.plot_format(plotfn3, format))
    of.write("""
plot(full[1:nrow(full),1], full[1:nrow(full),3], type="l", ylim=c(0,1), xlab="Normalized score", ylab="Sensitivity")

lines(naive[1:nrow(naive),1], naive[1:nrow(naive),3], col="red", lty=1)
lines(blast[1:nrow(blast),1] / max(blast[,1]), blast[1:nrow(blast),3], col="blue", lty=2)
lines(gtg[1:nrow(gtg),1], gtg[1:nrow(gtg),3], col="green", lty=2)
lines(btree[1:nrow(btree),1], btree[1:nrow(btree),3], col="purple", lty=1)
lines(gtree[1:nrow(gtree),1], gtree[1:nrow(gtree),3], col="orange", lty=1)
legend("bottomleft", c("Full","Naive","BLAST","GTG","BlastTree","GTGTree"), cex=0.8, col=c("black","red","blue","green","purple","orange"), pch=c(21,21,21,21,21,21), lty=c(1,1,2,2,1,1), inset=0.01)
dev.off()

""")

    plotfn4 = "%s/%s/%s-spec" % (ddir, roc_dir, species)
    of.write(plot.plot_format(plotfn4, format))
    of.write("""
plot(full[1:nrow(full),1], full[1:nrow(full),5], type="l", ylim=c(0,1), lty=2, xlab="Normalized score", ylab="Specificity")

lines(naive[1:nrow(naive),1], naive[1:nrow(naive),5], col="red", lty=2)
lines(blast[1:nrow(blast),1] / max(blast[,1]), blast[1:nrow(blast),5], col="blue", lty=2)
lines(gtg[1:nrow(gtg),1], gtg[1:nrow(gtg),5], col="green", lty=2)
lines(btree[1:nrow(btree),1], btree[1:nrow(btree),5], col="purple", lty=2)
lines(gtree[1:nrow(gtree),1], gtree[1:nrow(gtree),5], col="orange", lty=2)
legend("bottomleft", c("Full","Naive","BLAST","GTG","BlastTree","GTGTree"), cex=0.8, col=c("black","red","blue","green","purple","orange"), pch=c(21,21,21,21,21,21), lty=c(1,1,1,1,1,1), inset=0.01)
dev.off()

""")

    of.flush()
    subprocess.call("R CMD BATCH %s" % (of.name), shell = True)
#!/usr/bin/env python
# -*- coding: UTF-8 -*-

import logging
from plot import *
from cluster import *

def plot(data, density_threshold, distance_threshold, auto_select_dc = False):
	logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
	dpcluster = DensityPeakCluster()
	rho, delta, nneigh = dpcluster.cluster(load_paperdata, data, density_threshold, distance_threshold, auto_select_dc = auto_select_dc)
	logger.info(str(len(dpcluster.ccenter)) + ' center as below')
	for idx, center in dpcluster.ccenter.items():
		logger.info('%d %f %f' %(idx, rho[center], delta[center]))
	#plot_rho_delta(rho, delta)   #plot to choose the threthold
	plot_cluster(dpcluster)

if __name__ == '__main__':
	#plot('./data/data_in_paper/example_distances.dat', 20, 0.1)
	plot('./data/data_iris_flower/iris.forcluster', 40.7, 0.9, auto_select_dc = True)
Example #33
0
def plot_single(ddir, species, roc_dir, format="pdf"):
    of = tempfile.NamedTemporaryFile()
    plotfn = "%s/%s/%s" % (ddir, roc_dir, species)
    fn1 = "%s/%s/%s.full" % (ddir, roc_dir, species)
    fn2 = "%s/%s/%s.naive" % (ddir, roc_dir, species)
    fn3 = "%s/%s/%s.blast" % (ddir, roc_dir, species)
    fn4 = "%s/%s/%s.gtg" % (ddir, roc_dir, species)
    fn5 = "%s/%s/%s.blasttree" % (ddir, roc_dir, species)
    fn6 = "%s/%s/%s.gtgtree" % (ddir, roc_dir, species)

    of.write(plot.plot_format(plotfn, format))
    of.write("""
full = read.table("%s")
naive = read.table("%s")
blast = read.table("%s")
gtg = read.table("%s")
btree = read.table("%s")
gtree = read.table("%s")
plot(full[,2], full[,3], type="l", xlab="False positive rate", ylab="True positive rate")
lines(naive[,2], naive[,3], type="l", pch=22, lty=1, col="red")
lines(blast[,2], blast[,3], type="l", pch=22, lty=2, col="blue")
lines(gtg[,2], gtg[,3], type="l", pch=22, lty=2, col="green")
lines(btree[,2], btree[,3], type="l", pch=22, lty=1, col="purple")
lines(gtree[,2], gtree[,3], type="l", pch=22, lty=1, col="orange")
lines(c(0,1), c(0,1))

legend("bottomright", c("Full","Naive","BLAST","GTG", "BlastTree", "GTGTree"), cex=0.8, col=c("black","red","blue","green","purple","orange"), pch=c(21,21,21,21,21,21), lty=c(1,1,2,2,1,1), inset=0.01)
dev.off()
""" % (fn1, fn2, fn3, fn4, fn5, fn6))

    plotfn2 = "%s/%s/%s-F1" % (ddir, roc_dir, species)
    of.write(plot.plot_format(plotfn2, format))
    of.write("""

plot(full[3:nrow(full)-1,1], full[3:nrow(full)-1,4], type="l", ylim=c(0,1), xlab="Normalized score", ylab="")

lines(naive[3:nrow(naive)-1,1], naive[3:nrow(naive)-1,4], col="red", lty=1)
lines(blast[3:nrow(blast)-1,1] / max(blast[,1]), blast[3:nrow(blast)-1,4], col="blue", lty=2)
lines(gtg[3:nrow(gtg)-1,1], gtg[3:nrow(gtg)-1,4], col="green", lty=2)
lines(btree[3:nrow(btree)-1,1], btree[3:nrow(btree)-1,4], col="purple", lty=1)
lines(gtree[3:nrow(gtree)-1,1], gtree[3:nrow(gtree)-1,4], col="orange", lty=1)

legend("bottomleft", c("Full","Naive","BLAST","GTG","BlastTree","GTGTree"), cex=0.8, col=c("black","red","blue","green","purple","orange"), pch=c(21,21,21,21,21,21), lty=c(1,1,2,2,1,1), inset=0.01)
dev.off()
""")

    #par(mfrow=c(2,2), oma=c(2, 0, 3, 0), omi=c(0, 0, 0.8, 0))
    # plot(naive[3:nrow(naive)-1,1], naive[3:nrow(naive)-1,4], ylim=c(0,1), type="l", xlab="Posterior probability, naive model", ylab="F1 score")
    # plot(blast[3:nrow(blast)-1,1] / max(blast[,1]), blast[3:nrow(blast)-1,4], ylim=c(0,1), type="l", xlab="BLAST score", ylab="F1 score")
    # plot(gtg[3:nrow(gtg)-1,1], gtg[3:nrow(gtg)-1,4], ylim=c(0,1), type="l", xlab="GTG score", ylab="F1 score")

    plotfn3 = "%s/%s/%s-sens" % (ddir, roc_dir, species)
    of.write(plot.plot_format(plotfn3, format))
    of.write("""
plot(full[1:nrow(full),1], full[1:nrow(full),3], type="l", ylim=c(0,1), xlab="Normalized score", ylab="Sensitivity")

lines(naive[1:nrow(naive),1], naive[1:nrow(naive),3], col="red", lty=1)
lines(blast[1:nrow(blast),1] / max(blast[,1]), blast[1:nrow(blast),3], col="blue", lty=2)
lines(gtg[1:nrow(gtg),1], gtg[1:nrow(gtg),3], col="green", lty=2)
lines(btree[1:nrow(btree),1], btree[1:nrow(btree),3], col="purple", lty=1)
lines(gtree[1:nrow(gtree),1], gtree[1:nrow(gtree),3], col="orange", lty=1)
legend("bottomleft", c("Full","Naive","BLAST","GTG","BlastTree","GTGTree"), cex=0.8, col=c("black","red","blue","green","purple","orange"), pch=c(21,21,21,21,21,21), lty=c(1,1,2,2,1,1), inset=0.01)
dev.off()

""")

    plotfn4 = "%s/%s/%s-spec" % (ddir, roc_dir, species)
    of.write(plot.plot_format(plotfn4, format))
    of.write("""
plot(full[1:nrow(full),1], full[1:nrow(full),5], type="l", ylim=c(0,1), lty=2, xlab="Normalized score", ylab="Specificity")

lines(naive[1:nrow(naive),1], naive[1:nrow(naive),5], col="red", lty=2)
lines(blast[1:nrow(blast),1] / max(blast[,1]), blast[1:nrow(blast),5], col="blue", lty=2)
lines(gtg[1:nrow(gtg),1], gtg[1:nrow(gtg),5], col="green", lty=2)
lines(btree[1:nrow(btree),1], btree[1:nrow(btree),5], col="purple", lty=2)
lines(gtree[1:nrow(gtree),1], gtree[1:nrow(gtree),5], col="orange", lty=2)
legend("bottomleft", c("Full","Naive","BLAST","GTG","BlastTree","GTGTree"), cex=0.8, col=c("black","red","blue","green","purple","orange"), pch=c(21,21,21,21,21,21), lty=c(1,1,1,1,1,1), inset=0.01)
dev.off()

""")

    of.flush()
    subprocess.call("R CMD BATCH %s" % (of.name), shell=True)
      #Checking the solution:

 >>> soln=solve((exprq,expr2),dict=True)
>>> soln=soln[0]
>>> exprq.subs({x:soln[x],y:soln[y]})
0
>>> expr2.subs({x:soln[x],y:soln[y]})
0


 #Plotting using sympy

 >>> from sympy.plotting import plot
>>> from sympy import Symbol
>>> x=Symbol('x')
>>> plot(2*x+3)


      #If we dont want x from -10 to 10 as is standard but from -5 to 5 we do this

 >>> from sympy.plotting import plot
>>> from sympy import Symbol
>>> x=Symbol('x')
>>> plot((2*x+3),(x,-5,5))

      #We can further decorate the plot

 >>> from sympy.plotting import plot
>>> from sympy import Symbol
>>> x=Symbol('x')
>>> plot((2*x+3),(x,-5,5),title='A line',xlabel='x',ylabel='2x+3')
Example #35
0
def spiral(times, speed):
    #this function naturally runs slower than most, so speed is divided by 2
    #   to normalize speed
    speed = speed / 2

    fullcube(0)
    for t in range(times):
        #alternate between plotting 1 and 0
        for val in range(2):
            v = 1 - val

            #draw the spiraling point, then move up a layer
            for n in range(4):
                plotFill(1, n, 0, 2, n, 0, v)
                sleep(speed)

                plot(1, n, 0, v)
                plot(0, n, 1, v)
                sleep(speed)

                plotFill(0, n, 1, 0, n, 2, v)
                sleep(speed)

                plot(0, n, 2, v)
                plot(1, n, 3, v)
                sleep(speed)

                plotFill(1, n, 3, 2, n, 3, v)
                sleep(speed)

                plot(2, n, 3, v)
                plot(3, n, 2, v)
                sleep(speed)

                plotFill(3, n, 1, 3, n, 2, v)
                sleep(speed)

                plot(3, n, 1, v)
                if n < 3:
                    plot(2, n + 1, 0, v)
                sleep(speed)
#!/usr/bin/env python
# -*- coding: UTF-8 -*-

import logging
from plot import *
from cluster import *

def plot(data, auto_select_dc = False):
	logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
	dpcluster = DensityPeakCluster()
	distances, max_dis, min_dis, max_id, rho, rc = dpcluster.local_density(load_paperdata, data, auto_select_dc = auto_select_dc)
	delta, nneigh = min_distance(max_id, max_dis, distances, rho)
	plot_rho_delta(rho, delta)   #plot to choose the threthold

if __name__ == '__main__':
	#plot('./data/data_in_paper/example_distances.dat')
	#plot('./data/data_others/spiral_distance.dat')
	#plot('./data/data_others/aggregation_distance.dat')
	#plot('./data/data_others/flame_distance.dat')
	plot('./data/data_others/jain_distance.dat')
Example #37
0
File: cnt.py Project: NNemec/NNlib
                ])

    assert len(res.atoms) == N_atoms

    return res

if __name__ == "__main__":
    if False:
        from plot import *
        N = 6

        E = linspace(-8.5,8.5,200)*eV

        SDOS = array([
            SDOS_armchair_analytic(e/(2.66*eV),N)/(2.66*eV*N)
            for e in E
        ])

        def integral(x,y):
            return .5*sum((x[1:]-x[:-1])*(y[1:]+y[:-1]))

        print "integral: %g"%integral(E,SDOS)

        plot(E,SDOS)
        show()
    else:
#        param.setdefaults()
        zigzag(10).write_xyz_file('cnt-test-zigzag.xyz')
        armchair(10).write_xyz_file('cnt-test-armchair.xyz')
        chiral(5,4).write_xyz_file('cnt-test-chiral.xyz')
Example #38
0
File: tree.py Project: jcccf/ghnet
  DistributionPlot.histogram_plot('data/plots/file_hist/commits_dist.png', num_commits, bins=100)
  DistributionPlot.histogram_plot('data/plots/file_hist/authors_dist.png', num_authors, bins=100)

def test():
  test_files = ['actionpack/lib/action_dispatch/http/mime_type.rb', 
    'actionmailer/lib/action_mailer/mail_helper.rb',
    'actionmailer/test/fixtures/auto_layout_mailer/hello.html.erb',
    'actionpack/lib/action_view/helpers/asset_tag_helper.rb',
    'actionpack/lib/action_view/template/resolver.rb',
    'actionpack/test/controller/controller_fixtures/app/controllers/user_controller.rb',
    'actionpack/test/controller/new_base/render_layout_test.rb',
    'actionpack/test/fixtures/public/javascripts/application.js',
    'activesupport/lib/active_support/core_ext/file.rb',
    'activesupport/lib/active_support/core_ext/object/inclusion.rb']

  git = MGit.MGit('../rails')    
  for test in test_files:
    print '---'
    print test
    player = git.history(test)
    os.chdir('../ghnet')
    if player is not None:
      graph = MGraph.draw_lineage(player.lineage, test)
    os.chdir('../rails')
  # player = git.history('actionmailer/test/fixtures/attachments/foo.jpg')   # Will fail for sure

#test()  
# walk()
# walk_and_prepare()
plot()
Example #39
0
#itchat.run()
rounds = 4
while True:
    if rounds == 4:
        print '********refit the model*************'
        pullfuturekline()
        pullspotkline()
        merge_spot()
        merge_future()
        classification() 
        rounds = 0
        print '*********long term***********'
        print '********apply the model *************'
        test = model(15)
        print '********plot*************'
        plot(15, True)
        print '************send to itchat*********'
        itchat.send_image('data/figure.png', toUserName='******')
    
    print '*********short term***********'
    print '********apply the model *************'
    test = model(2)
    print '********plot*************'
    plot(2)
    print '************send to itchat*********'
    itchat.send_image('data/figure.png', toUserName='******')
    itchat.send(
            'long '+str(test.iloc[-1]['longposition'])+'\t'+str(test.iloc[-1]['longamount'])+'\n'+
            'short '+str(test.iloc[-1]['shortposition'])+'\t'+str(test.iloc[-1]['shortamount'])+'\n'+
            'liq '+str(test.iloc[-1]['liqbtc'])+'\n'
            'hold '+str(test.iloc[-1]['holdbtc'])+'\n'+
Example #40
0
import os
#os.chdir("/Users/charleslui/Documents/BCMind/bcmind_py")

import numpy as np

import Data
reload(Data)

import technical.SMA 
reload(technical.SMA)

import plot


d = Data(1467294196, 100)
d.plot()
technical.SMA.SMA(d,20)

reload(plot)
plot(d)
from numpy import *
from plot import *
from util import *
from gradientDescent import *
from predict import *
from scipy.optimize import *
import numpy as np

data = loadtxt('data1.txt', delimiter=',')
X = data[:,0:2]
y = data[:,2]
plot(X,y)

theta = np.zeros(X.shape[1] + 1)
dummy = ones(X.shape[0])
processX = column_stack([dummy, X])
alpha = 1
thetaResult = fmin_bfgs(computeCost, theta, args=(processX, y, alpha), fprime=costGradient)
print thetaResult
print predict(thetaResult, processX, y)
Example #42
0
        load_paperdata, data,load_mainPathLen,normalized_path_len, local_den_weight=1.0, path_len_weight=0.0\
        ,auto_select_dc=auto_select_dc)
    delta, nneigh = min_distance(max_id, max_dis, distances, rho)
    for index, (r_tmp, d_tmp) in enumerate(zip(rho, delta)):
        if r_tmp > rho_threshold and d_tmp > delta_threshold:
            print index, path_len_list[index], r_tmp, d_tmp
            pu.writeGraph2pajekNetFile(subgraph_list[index],
                                       'subgraph_' + str(index) + '.net')


if __name__ == '__main__':
    # plot('./data/data_in_paper/example_distances.dat')
    #plot('./data/data_iris_flower/iris.forcluster', auto_select_dc=True)

    plot('./data/data_main_path/main_path_topic_T0_S1_cosine.forcluster',\
         './data/data_main_path/normalized_node_num_of_path_array.npy',\
        auto_select_dc=False)
    '''
    printChosenCenter('./data/data_main_path/main_path_topic_T0_S1_cosine.forcluster',\
         './data/data_main_path/node_num_of_path_list.data', \
                      './data/data_main_path/normalized_node_num_of_path_list.data',\
                      30,0.4,
        auto_select_dc=False);
    '''
    '''
    outputChosenCenter_indicated_mainPath('./data/data_main_path/main_path_topic_T0_S1_cosine.forcluster',\
         './data/data_main_path/node_num_of_path_list.data', \
                      './data/data_main_path/normalized_node_num_of_path_list.data', \
                                          './data/data_main_path/subgraph_list.data', \
                                          30,0.4,
        auto_select_dc=False);
Example #43
0
"""
A simple example script
"""


import numpy as np
import qt
from plot import *

print locals()

d = qt.Data()
d.add_coordinate('X')
d.add_value('Y')
d.create_file()
p = plot(d)

# Inform wrapper that a measurement has started
qt.mstart()

for x in np.arange(0, 40, 0.1):
    y = np.sin(x) + np.random.rand()/10
    d.add_data_point(x, y)

    # Sleep for 100msec and allow UI interaction
    qt.msleep(0.1)

# Inform wrapper that the measurement has ended
qt.mend()

d.close_file()
Example #44
0
#addInstrumentToSong()

GenerateNote(instrumentC,
             [[32, [note("rest")]], [32, [note("C4")]], [32, [note("C5")]]])
#GenerateNote(randomInstrument(20),randomNotes(16,16))
export()

####Execution time####
print "My program took", time.time(
) - start_time, "seconds to run (Excluding plotting time)"
from evaluate import song
print "Computation time for song length", (len(song) / 44100) / (
    time.time() - start_time), "%"
####Execution time####

plot()

print ""
'''
	When you try to divide a list by a real number, python says "you are crazy! You can't do that." The array is like a vector. If you divide it by a real number, each "thing" in there is divided by that number. This can be super useful.
'''
'''
t = arange(0,3,0.01) - this makes an array of values. The values start at 0, end at 3 and increment by 0.01.

x = cos(pi*t*F) - here is the cool part. Remember that t is an array. This means that x is also an array. I don't have to do any loops or anything like that. Boom, just does it.
'''
'''
Do Fourier transform on piano later
'''
'''
How it should be like in the beta version (Optimisation such as how many bars to generate each time is not done yet):
Example #45
0
from pylab import *

from plot import *

v_rectangle_area = np.vectorize(rectangle_area)
v_rectangle_perimeter = np.vectorize(rectangle_perimeter)

S = np.linspace(0,10) # our side lengths

A = v_rectangle_area(S)  # the areas
P = v_rectangle_perimeter(S)  # the perimeters

plot(S, A, '-r', label="Area")
plot(S, P, ':b', label="Perimeter")

xlabel('side length')
ylabel('geo values')
title('rectangle Geo Properties')
legend(loc='upper right')

show()

#!/usr/bin/env python
# -*- coding: UTF-8 -*-

import logging
from plot import *
from cluster import *


def plot(data, auto_select_dc=False):
    logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s',
                        level=logging.INFO)
    dpcluster = DensityPeakCluster()
    distances, max_dis, min_dis, max_id, rho, rc = dpcluster.local_density(
        load_paperdata, data, auto_select_dc=auto_select_dc)
    delta, nneigh = min_distance(max_id, max_dis, distances, rho)
    plot_rho_delta(rho, delta)  #plot to choose the threthold


if __name__ == '__main__':
    #plot('./data/data_in_paper/example_distances.dat')
    #plot('./data/data_others/spiral_distance.dat')
    #plot('./data/data_others/aggregation_distance.dat')
    #plot('./data/data_others/flame_distance.dat')
    plot('./data/data_others/jain_distance.dat')
#!/usr/bin/env python
# -*- coding: UTF-8 -*-

import logging
from plot import *
from cluster import *

def plot(data, density_threshold, distance_threshold):
	logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s', level=logging.INFO)
	dpcluster = DensityPeakCluster()
	rho, delta, nneigh = dpcluster.cluster(load_paperdata, data, density_threshold, distance_threshold)
	logger.info(str(len(dpcluster.ccenter)) + ' center as below')
	for idx, center in dpcluster.ccenter.items():
		logger.info('%d %f %f' %(idx, rho[center], delta[center]))
	#plot_rho_delta(rho, delta)   #plot to choose the threthold
	plot_cluster(dpcluster)

if __name__ == '__main__':
	plot('./data/data_in_paper/example_distances.dat', 20, 0.1)