Example #1
0
def main(global_config, **main_settings):
    from {{cookiecutter.project_slug}}.lib.factories.root import RootFactory
    init_settings(read_config(global_config['__file__']))
    init_sqlalchemy()

    auth_settings = settings['auth']
    authentication_policy = DefaultAuthenticationPolicy(
        secret=auth_settings['secret'],
        timeout=auth_settings.get('timeout'),
        reissue_time=auth_settings.get('reissue_time'),
        callback=get_principals,
        http_only=True,
        hashalg='sha512'
    )

    config = Configurator(
        authentication_policy=authentication_policy,
        authorization_policy=ACLAuthorizationPolicy(),
        root_factory=RootFactory,
        settings=settings
    )
    config.scan('{{cookiecutter.project_slug}}.handlers')
    config.add_request_method(get_authenticated_user, 'user', reify=True)

    init_cache(settings['app:main'])

    return config.make_wsgi_app()
  def __init__(self):
    self.config = read_config()
    self.move_list = self.config["move_list"]
    self.start = self.config["start"]
    self.goal = self.config["goal"]
    self.walls = self.config["walls"]
    self.pits = self.config["pits"]
    self.map_size = self.config["map_size"]
  
    
    # config data for mdp
    self.threshold_diff = self.config["threshold_difference"]
    self.max_iteration = self.config["max_iterations"]
    self.reward_step = self.config["reward_for_each_step"]
    self.reward_wall = self.config["reward_for_hitting_wall"]
    self.reward_goal = self.config["reward_for_reaching_goal"]
    self.reward_pit = self.config["reward_for_falling_in_pit"]
    self.discount_factor = self.config["discount_factor"]
    self.learning_factor = 0.001
    
    # initialize the map
    self.map = self.init_map_structure()
    self.robot_mover = RobotMover(self.map)

    self.compute_map_policy()
    self.policy_list = self.flatten_map(self.map)
Example #3
0
    def __init__(self):
        self.config = read_config()
        self.move_list = self.config["move_list"]
        self.start = self.config["start"]
        self.goal = self.config["goal"]
        self.walls = self.config["walls"]
        self.pits = self.config["pits"]
        self.map_size = self.config["map_size"]

        # config data for mdp
        self.threshold_diff = self.config["threshold_difference"]
        self.max_iteration = self.config["max_iterations"]
        self.reward_step = self.config["reward_for_each_step"]
        self.reward_wall = self.config["reward_for_hitting_wall"]
        self.reward_goal = self.config["reward_for_reaching_goal"]
        self.reward_pit = self.config["reward_for_falling_in_pit"]
        self.discount_factor = self.config["discount_factor"]
        self.learning_factor = 0.001

        # initialize the map
        self.map = self.init_map_structure()
        self.robot_mover = RobotMover(self.map)

        self.compute_map_policy()
        self.policy_list = self.flatten_map(self.map)
def main(h_tab,start_t,end_t):
    # if date == None:
    #     date = datetime.datetime.now().strftime('%Y-%m-%d')
    db_config = read_config('db_config')
    db = pymysql.connect(host=db_config["host"], user=db_config["user"],
                         password=db_config["password"], database=db_config["database"])
    cursor = db.cursor()  # 使用cursor()方法获取用于执行SQL语句的游标
    sql = "select distinct  stock_id,stock_name from stock_trade_data where stock_id like '%{}'".format(h_tab)
    cursor.execute(sql)
    stock_id_list = cursor.fetchall()
    # date_time = datetime.datetime.strptime(date, '%Y-%m-%d')
    # start_t = (date_time - datetime.timedelta(days=90)).strftime('%Y-%m-%d')
    # stock_id_list = (('600121','郑州煤电'),)
    for ids_tuple in stock_id_list:
        ids = ids_tuple[0]
        print('ids:',ids)
        if ids[0:3] =='300' or ids[0:3] =='688':
            continue
        stock_name = ids_tuple[1]
        # trade_code = re.sub('-', '', date[0:10]) + id
        sql = "SELECT trade_date  FROM stock_trade_data \
                where trade_date >= '{0}' and trade_date <= '{1}' and  stock_id  = '{2}' " \
              "and increase >= 9.75 ".format( start_t, end_t,ids)
        cursor.execute(sql)
        date_res = cursor.fetchall()
        print('date_res:',date_res)
        if len(date_res) <3 :
            continue
        date_list = []
        for date in date_res:
            # print('date:',type(date[0]))
            date_list.append(date[0])
        date_list.sort(reverse=True)
        # date_list = [datetime.datetime(2019, 5, 31, 0, 0), datetime.datetime(2019, 3, 25, 0, 0), datetime.datetime(2019, 2, 21, 0, 0), datetime.datetime(2018, 11, 16, 0, 0), datetime.datetime(2018, 11, 15, 0, 0)]
        print('date_list:',date_list)
        i = 0
        delta = datetime.timedelta(days =3)
        count = 0
        while i < (len(date_list)-2):
            # date = datetime.datetime.strptime(date_res[i], "%Y-%m-%d")
            date = date_list[i]
            # date_second = datetime.datetime.strptime(date_res[j], "%Y-%m-%d")
            date_second = date_list[i+1]
            print('cha:',date , date_second)
            if date - date_second > delta:
                print('flag:',date_list[i].strftime("%Y%m%d"))
                if count >= 3:
                    trade_code = date_list[i].strftime("%Y%m%d") + ids
                    # trade_code = re.sub('-', '', date_res[i][0:10]) + ids
                    save(db, trade_code, ids, stock_name, date_list[i].strftime("%Y-%m-%d"), count)
                    count = 0
                else:
                    count = 0
                    i += 1
                    continue
            else:
                count += 1
            i += 1
Example #5
0
    def __init__(self):
        rospy.init_node("robot")
        # self.move_list = read_config()["move_list"]

        self.move_list = read_config()["move_list"]
        self.mapSize = read_config()["map_size"]
        self.start = read_config()["start"]
        self.goal = read_config()["goal"]
        self.walls = read_config()["walls"]
        self.pits = read_config()["pits"]
        self.cost = read_config()["reward_for_each_step"]

        rospy.sleep(1)
        self.pathPub = rospy.Publisher("/results/path_list",
                                       AStarPath,
                                       queue_size=10)

        self.completePub = rospy.Publisher("/map_node/sim_complete",
                                           Bool,
                                           queue_size=10)
        self.mdpPub = rospy.Publisher("/results/policy_list",
                                      PolicyList,
                                      queue_size=10)

        rospy.sleep(3)
        pathList = astar(self.move_list, self.mapSize, self.start, self.goal,
                         self.walls, self.pits, self.cost)

        print pathList
        for item in pathList:
            print item
            self.pathPub.publish(item)

        rospy.sleep(1)

        print "should publish"

        self.mdp = mdp()
        self.mdp.looping()
        self.QlearningEpsilon = QLearningEpislon()
        self.QlearningLValue = QLearningLValue()
        self.QlearningWithUncertainty = QLearningWithUncertainty()
        self.QlearningEpsilon.learning()
        self.QlearningLValue.learning()
        self.QlearningWithUncertainty.learning()

        policy = self.mdp.convertToList()

        self.mdpPub.publish(policy)
        rospy.sleep(1)

        policy = self.QlearningEpsilon.convertToList()
        self.mdpPub.publish(policy)
        rospy.sleep(1)

        policy = self.QlearningLValue.convertToList()
        self.mdpPub.publish(policy)
        rospy.sleep(1)

        policy = self.QlearningWithUncertainty.convertToList()
        self.mdpPub.publish(policy)
        rospy.sleep(1)

        self.completePub.publish(True)
        rospy.sleep(1)
        rospy.signal_shutdown("finish")
    def __init__(self):
        self.move_list = read_config()["move_list"]
        self.mapSize = read_config()["map_size"]
        self.start = read_config()["start"]

        self.goal = read_config()["goal"]
        self.walls = dict((tuple(el), 0) for el in read_config()["walls"])
        self.pits = dict((tuple(el), 0) for el in read_config()["pits"])

        self.cost = read_config()["reward_for_each_step"]

        self.goalReward = read_config()["reward_for_reaching_goal"]
        self.pitReward = read_config()["reward_for_falling_in_pit"]
        self.wallReward = read_config()["reward_for_hitting_wall"]

        self.factor = read_config()['discount_factor']
        self.alpha = 0.2
        self.c = 15.0

        # self.move_foward = read_config()["prob_move_forward"]
        # self.move_left = read_config()["prob_move_left"]
        # self.move_right = read_config()["prob_move_right"]
        # self.move_backward = read_config()["prob_move_backward"]

        self.iteration = read_config()["max_iterations"]
        # self.diff = read_config()[ "threshold_difference"]

        self.QLearningMap = []
        self.moveString = {
            "E": (0, 1),
            "W": (0, -1),
            "S": (1, 0),
            "N": (-1, 0)
        }
        slot.initialMap(self.walls, self.pits, self.goal)
        for row in range(0, self.mapSize[0]):  #[3,4]
            tempRow = []
            for column in range(0, self.mapSize[1]):  #x
                tempRow.append(slot(row, column))
            self.QLearningMap.append(tempRow)
    def __init__(self):
        self.move_list = read_config()["move_list"]
        self.mapSize = read_config()["map_size"]
        self.start = read_config()["start"]

        self.goal = read_config()["goal"]
        self.walls = dict((tuple(el),0) for el in read_config()["walls"])
        self.pits =dict((tuple(el),0) for el in read_config()["pits"])

        self.cost = read_config()["reward_for_each_step"]

        self.goalReward = read_config()["reward_for_reaching_goal"]
        self.pitReward = read_config()["reward_for_falling_in_pit"]
        self.wallReward = read_config()["reward_for_hitting_wall"]

        self.factor = read_config()['discount_factor']
        self.alpha = 0.2
        self.c = 15.0


        # self.move_foward = read_config()["prob_move_forward"]
        # self.move_left = read_config()["prob_move_left"]
        # self.move_right = read_config()["prob_move_right"]
        # self.move_backward = read_config()["prob_move_backward"]


        self.iteration = read_config() ["max_iterations"]
        # self.diff = read_config()[ "threshold_difference"]

        self.QLearningMap = []
        self. moveString = {"E":(0, 1),
                            "W":(0, -1),
                            "S":(1, 0),
                            "N":(-1, 0)}
        slot.initialMap(self.walls,self.pits,self.goal)
        for row in range(0,self.mapSize[0]): #[3,4]
            tempRow  = []
            for column in range(0,self.mapSize[1]): #x
                tempRow.append(slot(row,column))
            self.QLearningMap.append(tempRow)
Example #8
0
            command += f + " "
    os.system(command)
    print "\n. Results are packaged into results.tar.gz"

######################################################################
#
# main
#
splash()

"""If the user gives a configpath, then it's referenced
data will be imported into the database."""
configpath = ap.getOptionalArg("--configpath")

if configpath != False:
    ap.params = read_config( configpath )
    
    if False == validate_config(ap.params):
        print "\n. Error: something is wrong with your configuration file."
        print ". Look at previous errors for more detail."
        exit(0)
    
"""If the user didn't give a configpath, then we at
least need a dbpath (to load a prior database)."""
dbpath = ap.getOptionalArg("--dbpath")

if configpath == False:
    print "\n. Error, you need to specify a configuration path, using --configpath"
    exit()

"""Regardless of which options are being executed, the DB gets
Example #9
0
            command += f + " "
    os.system(command)
    print "\n. Results are packaged into results.tar.gz"


######################################################################
#
# main
#
splash()
"""If the user gives a configpath, then it's referenced
data will be imported into the database."""
configpath = ap.getOptionalArg("--configpath")

if configpath != False:
    ap.params = read_config(configpath)

    if False == validate_config(ap.params):
        print "\n. Error: something is wrong with your configuration file."
        print ". Look at previous errors for more detail."
        exit(0)
"""If the user didn't give a configpath, then we at
least need a dbpath (to load a prior database)."""
dbpath = ap.getOptionalArg("--dbpath")

if configpath == False:
    print "\n. Error, you need to specify a configuration path, using --configpath"
    exit()
"""Regardless of which options are being executed, the DB gets
built, or rebuilt, depending on its status."""
con = build_db(dbpath=dbpath)
Example #10
0
from read_config import *
from observables import *
from dmft_cycle import *
from csc_flow import csc_flow_control
import toolset as toolset

# timing information
if mpi.is_master_node(): global_start = timer()

# reading configuration for calculation
general_parameters = {}
solver_parameters = {}
if mpi.is_master_node():
    if len(sys.argv) > 1:
        print 'reading the config file ' + str(sys.argv[1])
        general_parameters, solver_parameters = read_config(str(sys.argv[1]))
        general_parameters['config_file'] = str(sys.argv[1])
    else:
        print 'reading the config file dmft_config.ini'
        general_parameters, solver_parameters = read_config('dmft_config.ini')
        general_parameters['config_file'] = 'dmft_config.ini'
    print '-------------------------- \n General parameters:'
    for key, value in general_parameters.iteritems():
        print "{0: <20}".format(key) + "{0: <4}".format(str(value))
    print '-------------------------- \n Solver parameters:'
    for key, value in solver_parameters.iteritems():
        print "{0: <20}".format(key) + "{0: <4}".format(str(value))

solver_parameters = mpi.bcast(solver_parameters)
general_parameters = mpi.bcast(general_parameters)
Example #11
0
    def __init__(self):
        self.move_list = read_config()["move_list"]
        self.mapSize = read_config()["map_size"]
        self.start = read_config()["start"]
        self.goal = read_config()["goal"]
        self.walls = read_config()["walls"]
        self.pits = read_config()["pits"]
        self.cost = read_config()["reward_for_each_step"]

        self.goalReward = read_config()["reward_for_reaching_goal"]
        self.pitReward = read_config()["reward_for_falling_in_pit"]
        self.wallReward = read_config()["reward_for_hitting_wall"]

        self.factor = read_config()['discount_factor']
        self.move_foward = read_config()["prob_move_forward"]
        self.move_left = read_config()["prob_move_left"]
        self.move_right = read_config()["prob_move_right"]
        self.move_backward = read_config()["prob_move_backward"]
        self.iteration = read_config()["max_iterations"]
        self.diff = read_config()["threshold_difference"]

        self.MDPmap = []
        self.moveString = {
            (0, 1): "E",
            (0, -1): "W",
            (1, 0): "S",
            (-1, 0): "N"
        }

        for row in range(0, self.mapSize[0]):  #[3,4]
            tempRow = []
            for column in range(0, self.mapSize[1]):  #x
                tempRow.append([float(0), "Empty"])
            self.MDPmap.append(tempRow)

        self.MDPmap[self.goal[0]][self.goal[1]] = [self.goalReward, "GOAL"]
        for wall in self.walls:
            self.MDPmap[wall[0]][wall[1]] = [self.wallReward, "WALL"]

        for pit in self.pits:
            self.MDPmap[pit[0]][pit[1]] = [self.pitReward, "PIT"]
Example #12
0
#!/bin/bash/env python

# read the config again
from read_config import *

config = read_config("./experiment.config")
svm_dir = config["libsvm_path"]

import os

current_dir = os.path.abspath("./")

svm_dir = svm_dir

os.chdir(svm_dir)
import svmutil

os.chdir(current_dir)
Example #13
0
    def __init__(self):
        self.move_list = read_config()["move_list"]
        self.mapSize = read_config()["map_size"]
        self.start = read_config()["start"]
        self.goal = read_config()["goal"]
        self.walls = read_config()["walls"]
        self.pits = read_config()["pits"]
        self.cost = read_config()["reward_for_each_step"]

        self.goalReward = read_config()["reward_for_reaching_goal"]
        self.pitReward = read_config()["reward_for_falling_in_pit"]
        self.wallReward = read_config()["reward_for_hitting_wall"]

        self.factor = read_config()['discount_factor']
        self.move_foward = read_config()["prob_move_forward"]
        self.move_left = read_config()["prob_move_left"]
        self.move_right = read_config()["prob_move_right"]
        self.move_backward = read_config()["prob_move_backward"]
        self.iteration = read_config() ["max_iterations"]
        self.diff = read_config()[ "threshold_difference"]

        self.MDPmap = []
        self. moveString = {(0, 1):"E",
                            (0, -1):"W",
                            (1, 0):"S",
                            (-1, 0):"N"}

        for row in range(0,self.mapSize[0]): #[3,4]
            tempRow  = []
            for column in range(0,self.mapSize[1]): #x
                tempRow.append([float(0),"Empty"])
            self.MDPmap.append(tempRow)


        self.MDPmap[self.goal[0]][self.goal[1]] =[self.goalReward,"GOAL"]
        for wall in self.walls:
            self.MDPmap[wall[0]][wall[1]] = [self.wallReward,"WALL"]

        for pit in self.pits:
            self.MDPmap[pit[0]][pit[1]]=[self.pitReward,"PIT"]
Example #14
0
import sys
from typing import Mapping, Any
from pyspark.sql import SparkSession
from {{cookiecutter.project_slug}}.config import read_config, setup_mlflow


spark: SparkSession = SparkSession.builder.appName('{{cookiecutter.project_name}}').getOrCreate()
conf: Mapping[str, Any] = read_config('config.yaml', sys.argv[1])
setup_mlflow(**conf)

#Add your training code here
Example #15
0
import expandcoor
import read_config
import random_cluster
import energy
import time
from expandcoor import addcoor
from read_config import read_config
from read_config import read_config1
from read_config import read_config2
from random_cluster import random_cluster
if __name__ == '__main__':
    # t_start = time.time()
    # 读取配置文件
    AL = read_config1('mp-2254.txt')
    O = read_config2('mp-2254.txt')
    aa = read_config('mp-2254.txt')
    alpha = aa['alpha']
    beta = aa['beta']
    gama = aa['gamma']
    a = aa['a']
    b = aa['b']
    c = aa['c']

    # 真实的三维坐标
    AL_real = []
    O_real = []
    for i in AL:
        x = i[0] * a
        y = i[1] * b
        z = i[2] * c
        AL_real.append([x, y, z])
Example #16
0
def main(args):
    # read in config parameters and validate against spec file
    config_file = 'config.ini'
    configspec_file = 'configspec.ini'
    params = read_config(config_file, configspec_file)

    # generate the LA phonon eid kernel if required
    if (params['run_params'].run_phonon_eid):
        laphononeid.eidkernel(params)

    # choose objective function from objective function dictionaries
    obj_gates = {
        'twolevel': obj_twolevel,
        'twolevel_dm': obj_twolevel_dm,
        'threelevel': obj_threelevel,
        'onedot': obj_onedot,
        'twodot': obj_twodot,
        'threedot': obj_threedot,
        'crot': obj_crot
    }
    obj_func = obj_gates[params['run_params'].gate]

    # choose amplitude and phase mask function from the mask function dictionary
    ampmasks = {
        'ampmask_chen': chenAmpMask,
        'mask_slmcc': slmccAmpMask,
        'ampmask_none': noAmpMask,
        'dichrome': dichromaticMask
    }
    phasemasks = {
        'phasemask_cos': cosinePhaseMask,
        'phasemask_poly': polyPhaseMask,
        'mask_slmcc': slmccPhaseMask,
        'phasemask_none': noPhaseMask
    }
    key = params['run_params'].run_ampmask
    if key in ampmasks:
        ampmaskfunc = ampmasks[key]
    else:
        print "amp mask not valid"
    key = params['run_params'].run_phasemask
    if key in phasemasks:
        phasemaskfunc = phasemasks[key]
    else:
        print "phase mask not valid"

    # read in configuration file and convert parameters to atomic Rhydberg units
    x = read_params(config_file)
    x = convert_aru(x, config_file, TO_ARU)

    # run optimization if required and get time dependence
    run_optimize = params['run_params'].optimize
    if run_optimize == True:
        x = nloptimize(obj_func, ampmaskfunc, phasemaskfunc, params,
                       config_file)
        fidelity = timedep(obj_func, ampmaskfunc, phasemaskfunc, params,
                           config_file)
    else:
        fidelity = timedep(obj_func, ampmaskfunc, phasemaskfunc, params,
                           config_file)

    # clean up directory
    os.system("rm *.pyc")
Example #17
0
 def show_read_config(self):
     self.read_config_widget = read_config()
     self.read_config_widget.show()
from {{cookiecutter.repo_name}}.inference import InferenceStage


def read_inp_file(filepath):
    raise NotImplementedError


def write_output(out, filepath):
    raise NotImplementedError


def apply_tfms(dataset, tfm_list):
    raise NotImplementedError


if __name__ == "__main__":
    _, config_file, *input_files, output_file, inference_file = \
        check_args_num(5, strict=False)
    set_random_seed()

    inp = [read_inp_file(inp_file) for inp_file in input_files]
    config = read_config(config_file)
    tfm_list = config.get('tfm_list')
    out = apply_tfms(inp, tfm_list)

    write_output(out, output_file)

    inference_stage = InferenceStage(input_list=input_files,
                                     params=config, transformers=tfm_list)
    inference_stage.save(inference_file)
Example #19
0
    def __init__(self):
        rospy.init_node("robot")
        # self.move_list = read_config()["move_list"]


        self.move_list = read_config()["move_list"]
        self.mapSize = read_config()["map_size"]
        self.start = read_config()["start"]
        self.goal = read_config()["goal"]
        self.walls = read_config()["walls"]
        self.pits = read_config()["pits"]
        self.cost = read_config()["reward_for_each_step"]


        rospy.sleep(1)
        self.pathPub = rospy.Publisher("/results/path_list",AStarPath,queue_size=10)

        self.completePub = rospy.Publisher("/map_node/sim_complete",Bool,queue_size=10)
        self.mdpPub = rospy.Publisher("/results/policy_list",PolicyList,queue_size=10)

        rospy.sleep(3)
        pathList = astar(self.move_list,self.mapSize,self.start,self.goal,self.walls,self.pits,self.cost)

        print pathList
        for item in pathList:
            print item
            self.pathPub.publish(item)

        rospy.sleep(1)




        print "should publish"

        self.mdp = mdp()
        self.mdp.looping()
        self.QlearningEpsilon = QLearningEpislon()
        self.QlearningLValue = QLearningLValue()
        self.QlearningWithUncertainty = QLearningWithUncertainty()
        self.QlearningEpsilon.learning()
        self.QlearningLValue.learning()
        self.QlearningWithUncertainty.learning()



        policy = self.mdp.convertToList()

        self.mdpPub.publish(policy)
        rospy.sleep(1)

        policy = self.QlearningEpsilon.convertToList()
        self.mdpPub.publish(policy)
        rospy.sleep(1)


        policy =self.QlearningLValue.convertToList()
        self.mdpPub.publish(policy)
        rospy.sleep(1)

        policy =self.QlearningWithUncertainty.convertToList()
        self.mdpPub.publish(policy)
        rospy.sleep(1)


        self.completePub.publish(True)
        rospy.sleep(1)
        rospy.signal_shutdown("finish")
Example #20
0
from read_config import *

a = read_config()["pits"]

# pit =   dict((tuple(el),0) for el in read_config()["goal"])
wall =   dict((tuple(el),0) for el in read_config()["walls"])
wall[(5,9)] = 1
print max(wall, key=wall.get)
print wall
if (5,9) in wall:
    print True