Example #1
0
def main(i):

    # Index would be 37,101,etc
    index = param_list[i, -1]
    image_name = "Stamps/" + str(int(index)) + "_img.npy"
    psf_name = "Stamps/" + str(int(index)) + "_psf.npy"
    err_name = "Stamps/" + str(int(index)) + "_err.npy"

    img = np.load(image_name)
    psf = np.load(psf_name)
    err = np.load(err_name)

    if fit_model == "sersic":
        params = list(param_list[i, 0:16])
        m, fit_image = AIM.sersic_AIM(img, err, psf, params, ftol=1.0e-6, quiet=1, return_image=True)
        data_catalog[i, 0:16] = m.params
        data_catalog[i, 16:32] = m.perror
        data_catalog[i, 32] = param_list[i, 16]  # x-coordinate
        data_catalog[i, 33] = param_list[i, 17]  # y-coordinate
        data_catalog[i, 34] = m.fnorm / (img.shape[0] ** 2 - 11)
        data_catalog[i, 35] = index

    elif fit_model == "disk_bulge":
        params = param_list[i, 0:18]
        m, fit_image = AIM.disk_bulge_AIM(img, err, psf, params, ftol=1.0e-6, quiet=1, return_image=True)
        data_catalog[i, 0:18] = m.params
        data_catalog[i, 18:36] = m.perror
        data_catalog[i, 36] = param_list[i, 17]  # x-coordinate
        data_catalog[i, 37] = param_list[i, 18]  # y-coordinate
        data_catalog[i, 38] = m.fnorm / (img.shape[0] ** 2 - 12)
        data_catalog[i, 39] = index

    elif fit_model == "combined_sersic":
        params = param_list[i, 0:19]
        m, fit_image = AIM.combined_sersic_AIM(img, err, psf, params, ftol=1.0e-6, quiet=1, return_image=True)
        data_catalog[i, 0:19] = m.params
        data_catalog[i, 19:38] = m.perror
        data_catalog[i, 38] = param_list[i, 17]  # x-coordinate
        data_catalog[i, 39] = param_list[i, 18]  # y-coordinate
        data_catalog[i, 40] = m.fnorm / (img.shape[0] ** 2 - 14)
        data_catalog[i, 41] = index

    print "Index: ", index
    # print "chi2/dof: ", m.fnorm/(img.shape[0]**2-11)
    fit_name = "Stamps/" + str(int(index)) + "_" + fit_model + "_fit.npy"
    np.save(fit_name, fit_image)
Example #2
0
for i in range(num):

	#Index would be 37,101,etc
	index = param_list[i,-1]
	image_name = 'Stamps/'+str(int(index))+'_img.npy'
	psf_name = 'Stamps/'+str(int(index))+'_psf.npy'
	err_name = 'Stamps/'+str(int(index))+'_err.npy'

	img = np.load(image_name)
	psf = np.load(psf_name)
	err = np.load(err_name)

	if fit_model == 'sersic':
		params = list(param_list[i,0:16])
		m,fit_image = AIM.sersic_AIM(img,err,psf,params,ftol=1.e-6,quiet=1,return_image=True)
		data_catalog[i,0:16] = m.params
		data_catalog[i,16:32] = m.perror
		data_catalog[i,32] = param_list[i,16] #x-coordinate
		data_catalog[i,33] = param_list[i,17] #y-coordinate
		data_catalog[i,34] = m.fnorm/(img.shape[0]**2-11)
		data_catalog[i,35] = index

	elif fit_model == 'disk_bulge':
		params = param_list[i,0:17]
		m,fit_image = AIM.disk_bulge_AIM(img,err,psf,params,ftol=1.e-6,quiet=1,return_image=True)
		data_catalog[i,0:17] = m.params
		data_catalog[i,17:34] = m.perror
		data_catalog[i,34] = param_list[i,17] #x-coordinate
		data_catalog[i,35] = param_list[i,18] #y-coordinate
		data_catalog[i,36] = m.fnorm/(img.shape[0]**2-12)
Example #3
0
def main(i):

	#Index would be 37,101,etc
	index = param_list[i,-1]
	image_name = 'data/Stamps/'+str(int(index))+'_img.npy'
	psf_name = 'data/Stamps/'+str(int(index))+'_psf.npy'
	err_name = 'data/Stamps/'+str(int(index))+'_err.npy'

	img = np.load(image_name)
	psf = np.load(psf_name)
	err = np.load(err_name)

	loc = np.where(data[:,0] == float(index))[0][0]
	colors = data[loc,1:]



	if fit_model == 'sersic':
		params = list(param_list[i,0:16])
		#print params
		m,fit_image = AIM.sersic_AIM(img,err,psf,params,ftol=1.e-6,quiet=1,return_image=True)
		data_catalog[i,0:16] = m.params
		data_catalog[i,16:32] = m.perror
		data_catalog[i,32] = param_list[i,16] #x-coordinate
		data_catalog[i,33] = param_list[i,17] #y-coordinate
		data_catalog[i,34] = m.fnorm/(img.shape[0]**2-11)
		data_catalog[i,35] = index
		data_catalog[i,36:] = colors

	elif fit_model == 'disk_bulge':
		params = param_list[i,0:18]
		m,fit_image = AIM.disk_bulge_AIM(img,err,psf,params,ftol=1.e-6,quiet=1,return_image=True)
		data_catalog[i,0:18] = m.params
		data_catalog[i,18:36] = m.perror
		data_catalog[i,36] = param_list[i,18] #x-coordinate
		data_catalog[i,37] = param_list[i,19] #y-coordinate
		data_catalog[i,38] = m.fnorm/(img.shape[0]**2-12)
		data_catalog[i,39] = index
		data_catalog[i,40:] = colors

	elif fit_model == 'combined_sersic':
		params = param_list[i,0:19]
		m,fit_image = AIM.combined_sersic_AIM(img,err,psf,params,ftol=1.e-6,quiet=1,return_image=True)
		data_catalog[i,0:19] = m.params
		data_catalog[i,19:38] = m.perror
		data_catalog[i,38] = param_list[i,17] #x-coordinate
		data_catalog[i,39] = param_list[i,18] #y-coordinate
		data_catalog[i,40] = m.fnorm/(img.shape[0]**2-14)
		data_catalog[i,41] = index
		data_catalog[i,42:] = colors



	print "Index: ",index
	try:
		print "X2: ", m.fnorm/m.dof
	except:
		print "ERROR"
		print m.params
	
	

	fit_name = 'data/Stamps/'+str(int(index))+'_fit.npy'
	np.save(fit_name,fit_image)
Example #4
0
import tensorflow as tf
import numpy as np
import model as M

# get data_reader
import data_reader
data_reader = data_reader.data_reader('outpt.txt')

M.set_gpu('1')

BSIZE = 32
ITER_PER_EPOC = 200000 // BSIZE
EPOC = 30
MAX_ITER = ITER_PER_EPOC * EPOC

aim_mod = AIM.AIM(data_reader.age_class, data_reader.max_id)

ETA = M.ETA(MAX_ITER)
ETA.start()
for iteration in range(MAX_ITER + 1):
    img, target, uniform, age, idn = data_reader.get_train_batch(BSIZE)
    losses, generated = aim_mod.train(img,
                                      target,
                                      uniform,
                                      age,
                                      idn,
                                      normalize=True)
    if iteration % 10 == 0:
        print('------ Iteration %d ---------' % iteration)
        aim_mod.display_losses(losses)
        print('ETA', ETA.get_ETA(iteration))