Example #1
0
 def __init__(self):
     
     freetype.init()
     cur_file_path = os.path.dirname(__file__)
     
     font_dir = os.path.join(cur_file_path, data_cfg.font_dir)
     self.font_list = os.listdir(font_dir)
     self.font_list = [os.path.join(font_dir, font_name) for font_name in self.font_list]
     self.standard_font_path = os.path.join(cur_file_path, data_cfg.standard_font_path)
     
     color_filepath = os.path.join(cur_file_path, data_cfg.color_filepath)
     self.colorsRGB, self.colorsLAB = colorize.get_color_matrix(color_filepath)
     
     text_filepath = os.path.join(cur_file_path, data_cfg.text_filepath)
     self.text_list = open(text_filepath, 'r').readlines()
     self.text_list = [text.strip() for text in self.text_list]
     
     bg_filepath = os.path.join(cur_file_path, data_cfg.bg_filepath)
     self.bg_list = open(bg_filepath, 'r').readlines()
     self.bg_list = [img_path.strip() for img_path in self.bg_list]
     
     self.surf_augmentor = Augmentor.DataPipeline(None)
     self.surf_augmentor.random_distortion(probability = data_cfg.elastic_rate,
         grid_width = data_cfg.elastic_grid_size, grid_height = data_cfg.elastic_grid_size,
         magnitude = data_cfg.elastic_magnitude)
     
     self.bg_augmentor = Augmentor.DataPipeline(None)
     self.bg_augmentor.random_brightness(probability = data_cfg.brightness_rate, 
         min_factor = data_cfg.brightness_min, max_factor = data_cfg.brightness_max)
     self.bg_augmentor.random_color(probability = data_cfg.color_rate, 
         min_factor = data_cfg.color_min, max_factor = data_cfg.color_max)
     self.bg_augmentor.random_contrast(probability = data_cfg.contrast_rate, 
         min_factor = data_cfg.contrast_min, max_factor = data_cfg.contrast_max)
Example #2
0
    def augmentate_batch(self, imgs_in, imgs_gt):
        """Generate ordered augmented batch of images, using Augmentor"""

        # Non-Linear transformations.
        imgs = [[imgs_in[i], imgs_gt[i]] for i in range(len(imgs_in))]
        p = Augmentor.DataPipeline(imgs)
        p.random_distortion(0.5, 6, 6, 4)
        # Linear transformations.
        # p.rotate(0.75, 15, 15)
        p.shear(0.75, 10.0, 10.0)
        p.zoom(0.75, 1.0, 1.2)
        p.skew(0.75, 0.75)
        imgs = self.__apply_augmentation__(p)
        imgs_in = [p[0] for p in imgs]
        imgs_gt = [p[1] for p in imgs]

        # Noise transformations.
        p = Augmentor.DataPipeline([[img] for img in imgs_in])
        gaussian_noise = GaussianNoiseAugmentor(0.25, 0, 10)
        p.add_operation(gaussian_noise)
        salt_pepper_noise = SaltPepperNoiseAugmentor(0.25, 0.005)
        p.add_operation(salt_pepper_noise)
        # Brightness transformation.
        p.random_brightness(0.75, 0.5, 1.5)
        p.random_contrast(0.75, 0.5, 1.5)
        # Colors invertion.
        invert = InvertPartAugmentor(0.25)
        p.add_operation(invert)
        p.invert(0.5)
        imgs_in = self.__apply_augmentation__(p)
        imgs_in = [p[0] for p in imgs_in]

        return imgs_in, imgs_gt
    def __data_generation__(self, id_name):
        'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels)
        # Initialization
        img_path = os.path.join(self.imgs_dir, id_name)  # polyp segmentation/images/id_name.jpg
        mask_path = os.path.join(self.masks_dir, id_name) # polyp segmenatation/masks/id_name.jpg

        img = io.imread(img_path)
        mask = cv2.imread(mask_path)

        p = Augmentor.DataPipeline([[img, mask]])
        p.resize(probability=1.0, width=self.img_size, height=self.img_size)
        p.rotate_without_crop(probability=0.3, max_left_rotation=10, max_right_rotation=10)
        #p.random_distortion(probability=0.3, grid_height=10, grid_width=10, magnitude=1)
        p.shear(probability=0.3, max_shear_left=1, max_shear_right=1)
        #p.skew_tilt(probability=0.3, magnitude=0.1)
        p.flip_random(probability=0.3)

        sample_p = p.sample(1)
        sample_p = np.array(sample_p).squeeze()

        p_img = sample_p[0]
        p_mask = sample_p[1]
        augmented_mask = (p_mask // 255) * 255  # denoising

        q = Augmentor.DataPipeline([[p_img]])
        q.random_contrast(probability=0.3, min_factor=0.2, max_factor=1.0)  # low to High
        q.random_brightness(probability=0.3, min_factor=0.2, max_factor=1.0)  # dark to bright

        sample_q = q.sample(1)
        sample_q = np.array(sample_q).squeeze()

        image = sample_q
        mask = augmented_mask[::, ::, 0]
        kernel = cv2.getStructuringElement(cv2.MORPH_RECT,(3,3))
        mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)
        """
        # reading the image from dataset
        ## Reading Image
        image = io.imread(img_path)  # reading image to image vaiable
        image = resize(image, (self.img_size, self.img_size), anti_aliasing=True)  # resizing input image to 128 * 128

        mask = io.imread(mask_path, as_gray=True)  # mask image of same size with all zeros
        mask = resize(mask, (self.img_size, self.img_size), anti_aliasing=True)  # resizing mask to fit the 128 * 128 image
        mask = np.expand_dims(mask, axis=-1)
        """

        # image normalization
        image = image / 255.0
        mask = mask / 255.0

        return image, mask
Example #4
0
def get_training_generator(train_dir, batch_size):
    """Training data generator with augmentation on the fly."""

    collated_images = list(
        zip(
            glob.glob(os.path.join(train_dir, 'images', '*.bmp')),
            glob.glob(os.path.join(train_dir, 'masks', '*.bmp')),
        ))

    data = [[imread(y) for y in x] for x in collated_images]

    p = Augmentor.DataPipeline(data)
    p.set_seed(0)
    p.rotate_random_90(0.5)
    p.zoom_random(0.5, percentage_area=0.8)
    p.crop_by_size(1, config.PATCH_SIZE, config.PATCH_SIZE, centre=False)
    p.flip_left_right(0.5)
    p.flip_top_bottom(0.5)

    def datagen():
        while True:
            augmented = p.sample(batch_size)
            x_batch = np.array([pair[0] for pair in augmented]) / 255.
            y_batch = np.expand_dims(np.array([pair[1] for pair in augmented]),
                                     -1)

            yield x_batch, y_batch

    return datagen()
    def augment_Images(imgs_in, imgs_gt):
        imgs = [[imgs_in[i], imgs_gt[i]] for i in range(len(imgs_in))]
        p = Augmentor.DataPipeline(imgs)
        p.random_distortion(0.5, 6, 6, 4)
        # Linear transformations.
        p.rotate(0.75, 15, 15)
        p.shear(0.75, 10.0, 10.0)
        p.zoom(0.75, 1.0, 1.2)
        p.skew(0.75, 0.75)

        batch = []
        for i in range(0, len(p.augmentor_images)):
            images_to_return = [
                Image.fromarray(x) for x in p.augmentor_images[i]
            ]

            for operation in p.operations:
                r = round(random.uniform(0, 1), 1)
                if r <= operation.probability:
                    images_to_return = operation.perform_operation(
                        images_to_return)

            images_to_return = [np.asarray(x) for x in images_to_return]
            batch.append(images_to_return)

        imgs = batch
        imgs_in = [p[0] for p in imgs]
        imgs_gt = [p[1] for p in imgs]

        return imgs_in, imgs_gt
Example #6
0
    def __getitem__(self, index):
        # Creating numpy arrays with images.
        start = index * self.batch_size
        stop = start + self.batch_size
        if stop >= self.indexes.shape[0]:
            stop = self.indexes.shape[0]

        images_pairs = []
        for i in range(start, stop):
            image_path = os.path.join(self.images_dir, self.image_name_lst[self.indexes[i]])
            image_gt_path = os.path.join(self.images_gt_dir, self.image_name_lst[self.indexes[i]])

            image = np.asarray(Image.open(image_path).convert('L'), dtype=np.uint8)
            image_gt = np.asarray(Image.open(image_gt_path).convert('L'), dtype=np.uint8)
            images_pairs.append([image, image_gt])

        p = Augmentor.DataPipeline(images_pairs)
        p.rotate(probability=1, max_left_rotation=25, max_right_rotation=25)
        p.flip_left_right(probability=0.5)
        p.zoom_random(probability=0.5, percentage_area=0.8)
        p.flip_top_bottom(probability=0.5)
        p.crop_by_size(probability=1, width=self.image_dim, height=self.image_dim, centre=False)
        p.resize(probability=1, width=self.image_dim, height=self.image_dim)
        augmented_images = p.sample(self.batch_size)
        images = np.asarray([np.expand_dims(normalize_image(augmented_image[0]), axis=2)
                             for augmented_image in augmented_images])
        images_gt = np.asarray([np.expand_dims(normalize_image(augmented_image[1], True), axis=2)
                                for augmented_image in augmented_images])
        return images, images_gt
    def __data_generation__(self, id_name):
        'Generates data containing batch_size samples'  # X : (n_samples, *dim, n_channels)
        # Initialization
        img_path = os.path.join(
            self.imgs_dir, id_name)  # polyp segmentation/images/id_name.jpg
        mask_path = os.path.join(
            self.masks_dir, id_name)  # polyp segmenatation/masks/id_name.jpg

        img = io.imread(img_path)
        mask = cv2.imread(mask_path)

        p = Augmentor.DataPipeline([[img, mask]])
        p.resize(probability=1.0, width=self.img_size, height=self.img_size)
        p.rotate_without_crop(probability=0.3,
                              max_left_rotation=10,
                              max_right_rotation=10)
        p.shear(probability=0.3, max_shear_left=1, max_shear_right=1)
        p.flip_random(probability=0.3)

        sample_p = p.sample(1)
        sample_p = np.array(sample_p).squeeze()

        p_img = sample_p[0]
        p_mask = sample_p[1]
        augmented_mask = (p_mask // 255) * 255  # denoising

        q = Augmentor.DataPipeline([[p_img]])
        q.random_contrast(probability=0.3, min_factor=0.2,
                          max_factor=1.0)  # low to High
        q.random_brightness(probability=0.3, min_factor=0.2,
                            max_factor=1.0)  # dark to bright

        sample_q = q.sample(1)
        sample_q = np.array(sample_q).squeeze()

        image = sample_q
        mask = augmented_mask[::, ::, 0]
        kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
        mask = cv2.morphologyEx(mask, cv2.MORPH_CLOSE, kernel)

        # image normalization
        image = image / 255.0
        mask = mask / 255.0

        return image, mask
Example #8
0
def augment_pair(full_img_path,
                 full_mask_path,
                 dest_folder_path,
                 b=30,
                 FISH_EYE=True,
                 PERSPECTIVE=True):
    """ augmenting tool using the Augmentor library. Supports augumeting two images at the same time.
	"""
    img1 = cv2.imread(full_img_path)
    img2 = cv2.imread(full_mask_path)
    image_name = os.path.basename(full_img_path)
    mask_name = os.path.basename(full_mask_path)

    # Initialize pipeline
    p = Augmentor.DataPipeline([[img1, img2]])

    # Apply augmentations
    p.rotate(1, max_left_rotation=5, max_right_rotation=5)
    p.shear(1, max_shear_left=5, max_shear_right=5)
    p.zoom_random(1, percentage_area=0.9)

    if FISH_EYE:
        p.random_distortion(probability=1,
                            grid_width=5,
                            grid_height=5,
                            magnitude=5)
        p.gaussian_distortion(probability=1,
                              grid_width=5,
                              grid_height=5,
                              magnitude=5,
                              corner='bell',
                              method='in')

    if PERSPECTIVE:
        p.shear(1, 10, 10)
        p.skew_tilt(1, magnitude=0.2)

    images_aug = p.sample(b)

    if dest_folder_path not in os.listdir():
        os.mkdir(dest_folder_path)
        os.mkdir(os.path.join(dest_folder_path, 'imgs'))
        os.mkdir(os.path.join(dest_folder_path, 'masks'))

    for i in range(len(images_aug)):
        mask_gray = cv2.cvtColor(images_aug[i][1], cv2.COLOR_BGR2GRAY)
        # Assumes .jpg extension name for masks
        cv2.imwrite(
            os.path.join(dest_folder_path, 'imgs',
                         image_name[:-3] + str(i) + ".jpg"), images_aug[i][0])
        cv2.imwrite(
            os.path.join(
                dest_folder_path,
                'masks',
                mask_name[:-3] + str(i) + ".jpg",
            ), mask_gray)
Example #9
0
def augment_images(lib_dir, num_sample):

    rotate = True
    flip_lr = True
    flip_tb = True
    zoom = True

    print('\nCreating augmented images using:')

    pics_dir = lib_dir + '/pics'
    masks_dir = lib_dir + '/masks'

    ground_truth_images = natsorted(glob.glob(pics_dir + '/*.jpg'))
    segmentation_mask_images = natsorted(glob.glob(masks_dir + '/*.png'))

    print('\nOriginal tile-mask pairs:')
    for i in range(0, len(ground_truth_images)):
        print("%s: Ground: %s | Mask: %s" %
              (i + 1, os.path.basename(ground_truth_images[i]),
               os.path.basename(segmentation_mask_images[i])))

    collated_images_and_masks = list(
        zip(ground_truth_images, segmentation_mask_images))

    images = [[np.asarray(Image.open(y)) for y in x]
              for x in collated_images_and_masks]

    p = Augmentor.DataPipeline(images)
    if rotate:
        p.rotate(probability=1, max_left_rotation=5, max_right_rotation=5)
    if flip_lr:
        p.flip_left_right(probability=0.5)
    if zoom:
        p.zoom_random(probability=0.5, percentage_area=0.8)
    if flip_tb:
        p.flip_top_bottom(probability=0.5)

    ndx = len(ground_truth_images)

    augmented_images = p.sample(num_sample)

    print('\nAdding %s augmented samples to library...' % num_sample)
    for i in range(num_sample):
        # print('Adding augmented image: %s / %s'%(i+1, num_sample))
        Image.fromarray(augmented_images[i][0].astype(
            np.uint8)).save(pics_dir + '/%s.jpg' % str(i + ndx))
        Image.fromarray(augmented_images[i][1].astype(
            np.uint8)).save(masks_dir + '/%s.png' % str(i + ndx))

    size_p = len(glob.glob(pics_dir + '/*.jpg'))
    size_m = len(glob.glob(masks_dir + '/*.png'))

    print('\nTraining library size:\nTiles: %s\nMasks: %s' % (size_p, size_m))

    return
Example #10
0
def test_sample_with_no_masks():
    # NOTE:
    # ---
    # Temporarily disable this test as it will fail currently.
    # The DataPipeline class currently does not handle images
    # that do not have associated masks. When this functionality
    # has been added, this test will be reinstated.
    # ---

    # This is to test if the user passes data that does not contain
    # any masks, in other words a list of images rather than the
    # data structure you have in other examples in this file.
    width = 80
    height = 80

    tmpdir = tempfile.mkdtemp()
    tmps = []

    num_of_images = 10

    for i in range(num_of_images):
        tmps.append(tempfile.NamedTemporaryFile(dir=tmpdir, suffix='.JPEG'))

        bytestream = io.BytesIO()

        im = Image.new('RGB', (width, height))
        im.save(bytestream, 'JPEG')

        tmps[i].file.write(bytestream.getvalue())
        tmps[i].flush()

    # Make our data structures
    # Labels
    y = [0 if random.random() <= 0.5 else 1 for x in range(0, num_of_images)]
    # Image data
    images = [np.asarray(x) for x in tmps]

    p = Augmentor.DataPipeline(images)
    assert len(p.augmentor_images) == len(glob.glob(os.path.join(tmpdir, "*.JPEG")))

    p.rotate(probability=1, max_left_rotation=5, max_right_rotation=5)

    sample_size = 100
    augmented_images = p.sample(sample_size)

    assert len(augmented_images) == sample_size

    # Close all temporary files which will also delete them automatically
    for i in range(len(tmps)):
        tmps[i].close()

    # Finally remove the directory (and everything in it) as mkdtemp does
    # not delete itself after closing automatically
    shutil.rmtree(tmpdir)
Example #11
0
File: data.py Project: h4nyu/aplf
def train_aug(images, probability=0.5):
    p = Augmentor.DataPipeline([images])
    p.rotate90(probability=probability)
    p.rotate270(probability=probability)
    p.flip_left_right(probability=probability)
    p.flip_top_bottom(probability=probability)
    p.rotate(1, max_left_rotation=5, max_right_rotation=5)
    p.zoom_random(probability=probability, percentage_area=0.7)
    p.random_distortion(probability=1,
                        grid_width=4,
                        grid_height=4,
                        magnitude=8)
    return p.sample(1)[0]
Example #12
0
def random_slice(arrays):
    assert arrays[0].shape == arrays[1].shape
    n_h = np.random.randint(arrays[0].shape[0])

    slices = [arr[n_h] for arr in arrays]

    #Augmentation
    p = Augmentor.DataPipeline([slices])
    p.rotate(1, max_left_rotation=5, max_right_rotation=5)
    p.flip_top_bottom(0.5)
    p.zoom_random(0.8, percentage_area=0.8)
    augmented_images = p.sample(1)
    return augmented_images
Example #13
0
def test_sample_with_no_masks():
    # NOTE:
    # ---
    # Temporarily disable this test as it will fail currently.
    # The DataPipeline class currently does not handle images
    # that do not have associated masks. When this functionality
    # has been added, this test will be reinstated.
    # ---

    # This is to test if the user passes data that does not contain
    # any masks, in other words a list of images rather than the
    # data structure you have in other examples in this file.
    width = 80
    height = 80

    tmpdir = tempfile.mkdtemp()

    num_of_images = 10
    tmpdir = tempfile.mkdtemp()
    tmps = create_multiple_images(tmpdir, num_of_images, (width, height))

    # Make our data structures
    # Labels
    y = [0 if random.random() <= 0.5 else 1 for x in range(0, num_of_images)]
    # Image data
    images = [np.asarray(x) for x in tmps]

    p = Augmentor.DataPipeline(images)
    assert len(p.augmentor_images) == len(
        glob.glob(os.path.join(tmpdir, "*.JPEG")))

    p.rotate(probability=1, max_left_rotation=5, max_right_rotation=5)

    sample_size = 100
    augmented_images = p.sample(sample_size)

    assert len(augmented_images) == sample_size

    # Finally remove the directory (and everything in it) as mkdtemp does
    # not delete itself after closing automatically
    shutil.rmtree(tmpdir)
Example #14
0
def make_data_gen_pipeline(images, augmentor_prob):
    # initialize augmentor:
    p = Augmentor.DataPipeline(images)

    # define augmentation:
    p.skew_tilt(probability=augmentor_prob, magnitude=0.2)
    p.random_distortion(probability=augmentor_prob,
                        grid_width=16,
                        grid_height=16,
                        magnitude=8)
    p.rotate(probability=augmentor_prob,
             max_left_rotation=5,
             max_right_rotation=5)
    p.flip_top_bottom(probability=augmentor_prob)
    p.flip_left_right(probability=augmentor_prob)
    p.zoom(probability=augmentor_prob, min_factor=0.9, max_factor=1.1)

    # define generator with the right batch size:
    g = p.generator(batch_size=batch_size)

    data_gen = do_data_gen(g=g)

    return data_gen
Example #15
0
    def data_augment(self, images, edges, imgh, imgw):
        images = Image.fromarray(np.uint8(np.asarray(images)), mode="RGB")
        mask = Image.fromarray(np.uint8(np.ones_like(edges)))
        edges = Image.fromarray(np.uint8(edges))

        if np.random.binomial(1, 0.8) > 0:
            brightness_factor = np.random.uniform(0.8, 1.2)
            images = F.adjust_brightness(images, brightness_factor)
        if np.random.binomial(1, 0.8) > 0:
            contrast_factor = np.random.uniform(0.5, 2)
            images = F.adjust_contrast(images, contrast_factor)
        if np.random.binomial(1, 0.8) > 0:
            hue_factor = np.random.uniform(-0.2, 0.2)
            images = F.adjust_hue(images, hue_factor)
        if np.random.binomial(1, 0.8) > 0:
            saturation_factor = np.random.uniform(0.8, 1.2)
            images = F.adjust_saturation(images, saturation_factor)

        if np.random.binomial(1, 0.8) > 0:
            angle = random.randint(-2, 2)
            translate = (random.randint(-int(imgw * 0.1), int(imgw * 0.1)),
                         random.randint(-int(imgh * 0.1), int(imgh * 0.1)))
            scale = np.random.uniform(0.9, 1.1)
            if scale < 1:  # scale:[0.9,1.1]
                scale = scale / 2 + 0.5
            shear = random.randint(-2, 2)
            images = F.affine(images,
                              angle,
                              translate,
                              scale,
                              shear,
                              resample=Image.BICUBIC)
            edges = F.affine(edges,
                             angle,
                             translate,
                             scale,
                             shear,
                             resample=Image.BICUBIC)
            mask = F.affine(mask,
                            angle,
                            translate,
                            scale,
                            shear,
                            resample=Image.BICUBIC)

        if np.random.binomial(1, 0.5) > 0:
            images = F.hflip(images)
            edges = F.hflip(edges)
            mask = F.hflip(mask)

        if np.random.binomial(1, 0.5) > 0:
            images = F.vflip(images)
            edges = F.vflip(edges)
            mask = F.vflip(mask)
        images = np.asarray(images)
        edges = np.asarray(edges)
        mask = np.asarray(mask)

        # https://github.com/mdbloice/Augmentor
        images = [[images, edges, mask]]
        p = Augmentor.DataPipeline(images)
        p.random_distortion(1, 10, 10, 10)
        g = p.generator(batch_size=1)
        augmented_images = next(g)
        images = augmented_images[0][0]
        edges = augmented_images[0][1]
        mask = augmented_images[0][2]

        edges = edges.copy()
        edges[edges < 128] = 0
        edges[edges >= 128] = 1
        edges = (morphology.skeletonize(edges)).astype(np.uint8)

        edges[edges == 1] = 255
        edges = self.resize(edges, imgh, imgw)
        mask = self.resize(mask, imgh, imgw)

        # 1.not thin edge truth
        edges[edges > 0] = 255

        # 2.thin edge truth
        # edges[edges>0]=1
        # edges = (morphology.skeletonize(edges)).astype(np.uint8)
        # edges[edges==1] = 255

        edges = (255 - edges) * mask
        return images, edges, mask * 255
Example #16
0
def create_augmented_dataset(train_fns,
                             test_fns,
                             df_masks,
                             filepath='../siim-train-test-augmented/',
                             no_pneumothorax_examples=2000,
                             pneumothorax_augmented_examples=2000):
    '''
    Function to create an augmented dataset:
    INPUT:
        train_fns, test_fns, df_masks - loaded original dataset
        filepath - path to save files of the augmented dataset
        no_pneumothorax_examples - number of healthy images to stay in the dataset
        pneumothorax_augmented_examples - number of augmented pneumothorax images to add to the dataset
    '''
    # image height and width
    im_height = 1024
    im_width = 1024
    # image channels
    im_chan = 1

    filepath_img = filepath + '/img/'
    filepath_mask = filepath + '/mask/'

    # loop over the training set
    for idx, fname in tqdm(enumerate(train_fns)):

        try:
            # If it is a picture without pneumothrax then we only take it
            # to the training dataset with a certain ptobability
            if '-1' in df_masks.loc[fname.split('/')[-1][:-4],
                                    ' EncodedPixels']:
                # Get sample from uniform distribution and decide to copy the healthy sample
                if random.uniform(
                        0, 1) < (no_pneumothorax_examples / len(train_fns)):
                    np_image = np.zeros((im_height, im_width, im_chan),
                                        dtype=np.uint8)
                    data = pydicom.read_file(fname)
                    np_image = np.expand_dims(data.pixel_array, axis=2)
                    image = Image.fromarray(
                        np_image.reshape(im_height, im_width), 'L')
                    image = normalize_image(image)
                    image.save(filepath_img + fname.split('/')[-1][:-4] +
                               '.png')

                    np_mask = np.zeros((im_height, im_width, 1), dtype=np.bool)
                    mask = Image.fromarray(
                        np_mask.reshape(im_height, im_width).astype(np.uint8),
                        'L')
                    mask.save(filepath_mask + fname.split('/')[-1][:-4] +
                              '_mask.png')
            else:
                # If there is pneumothrax on the image then we copy it to the output directory
                np_image = np.zeros((im_height, im_width, im_chan),
                                    dtype=np.uint8)
                data = pydicom.read_file(fname)
                np_image = np.expand_dims(data.pixel_array, axis=2)
                image = Image.fromarray(np_image.reshape(im_height, im_width),
                                        'L')
                image = normalize_image(image)
                image.save(filepath_img + fname.split('/')[-1][:-4] + '.png')

                # Copy the mask to the output directory
                np_mask = np.zeros((im_height, im_width, 1), dtype=np.bool)
                if type(df_masks.loc[fname.split('/')[-1][:-4],
                                     ' EncodedPixels']) == str:
                    np_mask = np.expand_dims(rle2mask(
                        df_masks.loc[fname.split('/')[-1][:-4],
                                     ' EncodedPixels'], im_height, im_width),
                                             axis=2)
                else:
                    np_mask = np.zeros((im_height, im_width, 1))
                    for x in df_masks.loc[fname.split('/')[-1][:-4],
                                          ' EncodedPixels']:
                        np_mask = np_mask + np.expand_dims(
                            rle2mask(x, im_height, im_width), axis=2)

                np_mask = np.transpose(np_mask)
                mask = Image.fromarray(
                    np_mask.reshape(im_height, im_width).astype(np.uint8), 'L')
                mask.save(filepath_mask + fname.split('/')[-1][:-4] +
                          '_mask.png')

                # Get sample from uniform distribution and decide to include augmented example to the train set
                if random.uniform(0, 1) < (pneumothorax_augmented_examples /
                                           len(train_fns)):

                    # augment image and masks
                    p = Augmentor.DataPipeline(
                        [[np.array(image), np.array(mask)]])
                    p.rotate(0.7, max_left_rotation=3, max_right_rotation=3)
                    p.zoom_random(probability=0.3, percentage_area=0.95)
                    images_aug = p.sample(1)

                    image = Image.fromarray(
                        images_aug[0][0].reshape(im_height, im_width,
                                                 3).astype(np.uint8), 'L')
                    mask = Image.fromarray(
                        images_aug[0][1].reshape(im_height,
                                                 im_width).astype(np.uint8),
                        'L')

                    # apply random horizontal flip
                    flip = random.uniform(0, 1)
                    if (flip > 0.5):
                        image = TF.hflip(image)
                        mask = TF.hflip(mask)

                    # Save augmented image as png and mask as png
                    image.save(filepath_img + new_image_id + '.png')
                    mask.save(filepath_mask + new_image_id + '_mask.png')
        except:
            pass
Example #17
0
    def __getitem__(self, idx):

        image_name = self.image_name_list[idx]
        #glob(searching criteria) : find files that meet searching criteria, output type : list.
        #glob(탐색 기준식) : 탐색 기준식을 만족하는 파일을 찾아, 그 항목들을 리스트로 반환.
        mask_file = glob(self.masks_dir + image_name +
                         '.*')  # (in the case of 'image name == mask name')
        img_file = glob(self.imgs_dir + image_name +
                        '.*')  #(in the case of 'image name == mask name')

        assert len(mask_file) == 1, \
            f'Either no mask or multiple masks found for the ID {image_name}: {mask_file}'
        assert len(img_file) == 1, \
            f'Either no image or multiple images found for the ID {image_name}: {img_file}'

        # print("img name : {}".format(img_file[0]))
        img = io.imread(img_file[0])
        mask_for_notf = io.imread(mask_file[0])
        mask = cv2.imread(
            mask_file[0]
        )  # for augmenting, gray image: cv2.imread=(width, height, 3) , io.imread=(width, height)


        assert img.shape == mask.shape, \
            f'Image and mask {image_name} should be the same size, but are {img.size} and {mask.size}'

        if self.is_transform == False:
            img = self.preprocess(img, self.resizing)
            mask = self.preprocess(mask_for_notf, self.resizing)
            data = {
                'image': torch.from_numpy(img),
                'mask': torch.from_numpy(mask)
            }
        else:
            if np.random.uniform(size=1)[0] >= 0.7:
                sigma = np.random.uniform(0.1, 1, size=1)[0]
                img = (gaussian(img, sigma=sigma, multichannel=True) *
                       255).astype(np.uint8)

                p = Augmentor.DataPipeline([[img, mask]])
                p.resize(probability=1.0, width=256, height=256)
                p.rotate_without_crop(probability=0.3,
                                      max_left_rotation=25,
                                      max_right_rotation=25)
                p.shear(probability=0.3,
                        max_shear_left=0.5,
                        max_shear_right=0.5)
                p.flip_random(probability=0.6)


#                 p.skew_tilt(probability=0.3, magnitude=0.1)
#                 p.random_distortion(probability=0.3, grid_height=10, grid_width=10, magnitude=1)
#                 p.zoom(probability=1.0, min_factor=1.1, max_factor=1.3)

            sample_p = p.sample(1)
            sample_p = np.array(sample_p).squeeze()

            p_img = sample_p[0]
            p_mask = sample_p[1]
            augmented_mask = (p_mask //
                              255) * 255  #np.where(p_mask<=0, p_mask, 255)

            q = Augmentor.DataPipeline([[p_img]])
            q.random_contrast(probability=0.3, min_factor=0.2,
                              max_factor=1.0)  # low to High
            q.random_brightness(probability=0.3,
                                min_factor=0.2,
                                max_factor=1.0)  # dark to bright

            sample_q = q.sample(1)
            sample_q = np.array(sample_q).squeeze()

            augmented_img = sample_q
            augmented_mask = augmented_mask[::, ::, 0]
            kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))
            augmented_mask = cv2.morphologyEx(augmented_mask, cv2.MORPH_CLOSE,
                                              kernel)

            result_img = self.preprocess_wo_resize(augmented_img)
            result_mask = self.preprocess_wo_resize(augmented_mask)

            data = {
                'image': torch.from_numpy(result_img),
                'mask': torch.from_numpy(result_mask)
            }
        return data
Example #18
0
def use_augmetor_for_data(dataset_bs_paths, args):
    """
  Act
    * 
  
  Params
    * dataset_bs_paths
    * args
  
  Return
    * 
  """
    try:
        path_to_be_loaded = dataset_bs_paths

        paths_of_imgs = list(dataset_bs_paths[0])
        # print("paths_of_imgs",paths_of_imgs)
        # [('/mnt/1T-5e7/mycodehtml/bio_health/Kaggle/human-protein-atlas-image-classification/Data/train/d84b9aa8-bbb6-11e8-b2ba-ac1f6b6435d0_blue.png',
        #   '/mnt/1T-5e7/mycodehtml/bio_health/Kaggle/human-protein-atlas-image-classification/Data/train/d84b9aa8-bbb6-11e8-b2ba-ac1f6b6435d0_green.png',
        #   '/mnt/1T-5e7/mycodehtml/bio_health/Kaggle/human-protein-atlas-image-classification/Data/train/d84b9aa8-bbb6-11e8-b2ba-ac1f6b6435d0_red.png',
        #   '/mnt/1T-5e7/mycodehtml/bio_health/Kaggle/human-protein-atlas-image-classification/Data/train/d84b9aa8-bbb6-11e8-b2ba-ac1f6b6435d0_yellow.png'),
        #  ('/mnt/1T-5e7/mycodehtml/bio_health/Kaggle/human-protein-atlas-image-classification/Data/train/6d3a7a02-bb9f-11e8-b2b9-ac1f6b6435d0_blue.png',
        #   '/mnt/1T-5e7/mycodehtml/bio_health/Kaggle/human-protein-atlas-image-classification/Data/train/6d3a7a02-bb9f-11e8-b2b9-ac1f6b6435d0_green.png',
        #   '/mnt/1T-5e7/mycodehtml/bio_health/Kaggle/human-protein-atlas-image-classification/Data/train/6d3a7a02-bb9f-11e8-b2b9-ac1f6b6435d0_red.png',
        #   '/mnt/1T-5e7/mycodehtml/bio_health/Kaggle/human-protein-atlas-image-classification/Data/train/6d3a7a02-bb9f-11e8-b2b9-ac1f6b6435d0_yellow.png')]

        # ================================================================================
        labels_of_imgs = dataset_bs_paths[1]
        # print("labels_of_imgs",labels_of_imgs)
        # ['0' '5 0']

        # ================================================================================
        labels_of_imgs_li = []
        for one_lbl_set in labels_of_imgs:
            one_list = one_lbl_set.split(" ")
            # print("one_list",one_list)
            # ['0']

            one_list = list(map(int, one_list))
            # print("one_list",one_list)
            # [0]

            labels_of_imgs_li.append(one_list)

        # print("labels_of_imgs_li",labels_of_imgs_li)
        # [[0], [5, 0]]

        # ================================================================================
        # @ Load images

        dataset_bs_paths = []
        for one_protein in paths_of_imgs:
            loaded_b_img = np.array(
                Image.open(one_protein[0].replace("\n", "")))
            loaded_g_img = np.array(
                Image.open(one_protein[1].replace("\n", "")))
            loaded_r_img = np.array(
                Image.open(one_protein[2].replace("\n", "")))
            loaded_y_img = np.array(
                Image.open(one_protein[3].replace("\n", "")))

            dataset_bs_paths.append(
                [loaded_b_img, loaded_g_img, loaded_r_img, loaded_y_img])

        # print("dataset_bs_paths",np.array(dataset_bs_paths).shape)
        # (2, 4, 512, 512)

        # ================================================================================
        labels_of_imgs = labels_of_imgs_li

        # ================================================================================
        # region augmentation on group
        aug_pipeline = Augmentor.DataPipeline(dataset_bs_paths, labels_of_imgs)

        # ================================================================================
        # @ crop_by_size
        # aug_pipeline.crop_by_size(probability=1.0,width=48,height=48,centre=True)

        # ================================================================================
        # @ rotate
        aug_pipeline.rotate(probability=0.5,
                            max_left_rotation=6,
                            max_right_rotation=7)

        # ================================================================================
        # @ flip_random
        aug_pipeline.flip_random(probability=0.5)

        # ================================================================================
        # @ resize
        aug_pipeline.resize(probability=1.0,
                            width=224,
                            height=224,
                            resample_filter="BILINEAR")

        # ================================================================================
        # @ sample
        sampled_trn_and_rgt_imgs_li, label_values = aug_pipeline.sample(
            int(args.batch_size))

        # print("sampled_trn_and_rgt_imgs_li",len(sampled_trn_and_rgt_imgs_li))
        # 2

        # print("label_values",label_values)
        # label_values [[18, 0], [22, 0, 21]]

        # ================================================================================
        sampled_trn_imgs = np.array(sampled_trn_and_rgt_imgs_li) / 255.0
        # print("sampled_trn_imgs",sampled_trn_imgs.shape)
        # (2, 4, 224, 224)

        return sampled_trn_imgs, label_values

    except:
        print(traceback.format_exc())
        print("Error when loading images")
        print("path_to_be_loaded", path_to_be_loaded)
Example #19
0
# TODO: Edit according to class number
collated_images_and_masks = list(zip(overall_list[0], overall_list[1], overall_list[2], overall_list[3], overall_list[4], overall_list[5]))
images = [[np.asarray(Image.open(y)) for y in x] for x in collated_images_and_masks]
print("image and masks loaded!")

if debug:
    print(collated_images_and_masks)

# import background
bg_list = []
for bg in glob.glob(background_file):
    bg_list.append(bg)
print("background list load: " + str(len(bg_list)))

# define augmentor
p = Augmentor.DataPipeline(images)
p.zoom(1, 0.3, 1.0)
p.zoom_random(1, .9)
p.skew(1, .8)
p.flip_random(1)
p.random_distortion(.3, 10, 10, 7)
p.random_color(1, .3, 1.2)
p.random_contrast(1, .5, 1.5)
p.random_brightness(1, 0.5, 1.5)
p.shear(.5, 15, 15)
# p.random_erasing(.75, 0.25)
p.rotate_random_90(1)
p.rotate(1, max_left_rotation=15, max_right_rotation=15)

# begin generation
for i in range(begin//batch, count//batch):
Example #20
0
    def __getitem__(self, idx):
        '''
        Function to get items from dataset by idx.
        INPUT:
            idx - id of the image in the dataset
        '''
        # image height and width
        im_height = 1024
        im_width = 1024
        # image channels
        im_chan = 3

        # get train image and mask
        np_image = np.zeros((im_height, im_width, im_chan), dtype=np.uint8)
        np_mask = np.zeros((im_height, im_width, im_chan), dtype=np.bool)

        # if validation then return filename instead of mask
        if self.mode == 'validation':
            # read dcm file with image
            dataset = pydicom.read_file(self.fns[idx])
            np_image = np.expand_dims(dataset.pixel_array, axis=2)

            image = Image.fromarray(np_image.reshape(im_height, im_width), 'L')
            image = image.convert('RGB')
            image = self.transforms_image(image)
            return [image, self.fns[idx].split('/')[-1][:-4]]

        # read dcm file with image
        dataset = pydicom.read_file(self.files_list[idx])
        np_image = np.expand_dims(dataset.pixel_array, axis=2)

        # load mask
        try:
            # no pneumothorax
            if '-1' in self.labels_frame.loc[
                    self.files_list[idx].split('/')[-1][:-4],
                    ' EncodedPixels']:
                np_mask = np.zeros((im_height, im_width, 1), dtype=np.bool)
            else:
                # there is pneumothorax
                if type(self.labels_frame.loc[
                        self.files_list[idx].split('/')[-1][:-4],
                        ' EncodedPixels']) == str:
                    np_mask = np.expand_dims(rle2mask(
                        self.labels_frame.loc[
                            self.files_list[idx].split('/')[-1][:-4],
                            ' EncodedPixels'], im_height, im_width),
                                             axis=2)
                else:
                    np_mask = np.zeros((1024, 1024, 1))
                    for x in self.labels_frame.loc[
                            self.files_list[idx].split('/')[-1][:-4],
                            ' EncodedPixels']:
                        np_mask = np_mask + np.expand_dims(
                            rle2mask(x, 1024, 1024), axis=2)
        except KeyError:
            # couldn't find mask in dataframe
            np_mask = np.zeros(
                (im_height, im_width, 1),
                dtype=np.bool)  # Assume missing masks are empty masks.

        # convert to PIL
        image = Image.fromarray(np_image.reshape(im_height, im_width), 'L')
        image = image.convert('RGB')
        np_mask = np.transpose(np_mask)
        mask = Image.fromarray(
            np_mask.reshape(im_height, im_width).astype(np.uint8), 'L')

        # apply optional transforms (random rotation for the training set)
        if self.transform:
            # apply random rotation

            p = Augmentor.DataPipeline([[np.array(image), np.array(mask)]])
            p.rotate(0.7, max_left_rotation=3, max_right_rotation=3)
            p.zoom_random(probability=0.3, percentage_area=0.95)
            images_aug = p.sample(1)

            image = Image.fromarray(
                images_aug[0][0].reshape(im_height, im_width,
                                         3).astype(np.uint8), 'RGB')
            mask = Image.fromarray(
                images_aug[0][1].reshape(im_height, im_width).astype(np.uint8),
                'L')

            # apply random horizontal flip
            flip = random.uniform(0, 1)
            if (flip > 0.5):
                image = TF.hflip(image)
                mask = TF.hflip(mask)

        # apply required transforms normalization, reshape and convert to tensor
        image = TF.resize(image, self.size)
        mask = TF.resize(mask, self.size)

        # convert image to tensors and normalize
        image = TF.to_tensor(image)
        image = TF.normalize(image,
                             mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225])

        ts = time.time()
        TF.to_pil_image(image).save('image' + str(ts) + '.png')

        # convert to tensor and clip mask
        mask = torch.from_numpy(np.array(mask, dtype=np.int64))
        mask = np.clip(mask, 0, 1)

        return image, mask
Example #21
0
def test_sample_with_masks():
    width = 80
    height = 80

    # Original images
    tmpdir = tempfile.mkdtemp()
    tmps = []

    num_of_images = 10

    for i in range(num_of_images):
        tmps.append(tempfile.NamedTemporaryFile(dir=tmpdir, prefix=str(i), suffix='.JPEG'))

        bytestream = io.BytesIO()

        im = Image.new('RGB', (width, height))
        im.save(bytestream, 'JPEG')

        tmps[i].file.write(bytestream.getvalue())
        tmps[i].flush()

    # Mask images
    mask_tmpdir = tempfile.mkdtemp()
    mask_tmps = []

    for i in range(num_of_images):
        mask_tmps.append(tempfile.NamedTemporaryFile(dir=mask_tmpdir, prefix=str(i), suffix='.JPEG'))

        bytestream = io.BytesIO()

        im = Image.new('RGB', (width, height))
        im.save(bytestream, 'JPEG')

        mask_tmps[i].file.write(bytestream.getvalue())
        mask_tmps[i].flush()

    original_image_list = glob.glob(os.path.join(tmpdir, "*.JPEG"))
    mask_image_list = glob.glob(os.path.join(mask_tmpdir, "*.JPEG"))
    assert len(original_image_list) == len(mask_image_list)
    assert len(original_image_list) == num_of_images
    assert len(mask_image_list) == num_of_images

    collated_paths = list(zip(original_image_list, mask_image_list))  # list() required as Python 3 returns an iterator

    assert len(collated_paths) == num_of_images

    # Generate our labels and image data structure
    # y = [0 if random.random() <= 0.5 else 1 for x in range(0, num_of_images)]  # Random list of 0s and 1s
    image_class = 0 if random.random() <= 0.5 else 1
    y = [image_class] * num_of_images  # List of either all 0s or all 1s
    assert len(y) == num_of_images

    images = [[np.asarray(Image.open(im)) for im in im_list] for im_list in collated_paths]
    assert len(images) == num_of_images

    p = Augmentor.DataPipeline(images, y)
    p.rotate(probability=1, max_left_rotation=5, max_right_rotation=5)

    sample_size = 10
    augmented_images, augmented_labels = p.sample(sample_size)

    assert len(augmented_images) == sample_size
    assert len(augmented_labels) == sample_size

    print(augmented_labels)
    for i in range(0, len(augmented_labels)):
        assert augmented_labels[i] == image_class

    for im_list in augmented_images:
        for im in im_list:
            pil_image_from_array = Image.fromarray(im)
            assert pil_image_from_array is not None

    # Now without labels
    p = Augmentor.DataPipeline(images)
    p.zoom_random(probability=1, percentage_area=0.5)

    augmented_images_no_labels = p.sample(sample_size)
    assert len(augmented_images_no_labels) == sample_size

    for im_list_no_labels in augmented_images_no_labels:
        for im in im_list_no_labels:
            pil_image_from_array_no_lbl = Image.fromarray(im)
            assert pil_image_from_array_no_lbl is not None

    # Close all temporary files which will also delete them automatically
    for i in range(len(tmps)):
        tmps[i].close()

    for i in range(len(tmps)):
        mask_tmps[i].close()

    # Finally remove the directory (and everything in it) as mkdtemp does
    # not delete itself after closing automatically
    shutil.rmtree(tmpdir)
    shutil.rmtree(mask_tmpdir)
Example #22
0
    def __load__(self, load_image_index):
        ## Path
        image_path = self.image_paths[load_image_index]
        target_path = self.target_paths[load_image_index]

        ## Reading Image
        image = cv2.imread(image_path)
        image = cv2.resize(image, (self.o_w, self.o_h))
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

        ## Reading Mask
        target = cv2.imread(target_path)
        target = cv2.resize(target, (self.o_w, self.o_h))
        target = cv2.cvtColor(target, cv2.COLOR_BGR2RGB)

        ## Image and mask augmentation with random perspective scalling, translation, and rotation
        height, width = self.o_h, self.o_w

        ## Set ranges
        frame = self.s_p
        theta = self.r_d
        hor = self.t_p
        ver = self.t_p

        ## Generate rectangles for dropout
        rectangles = {}
        for i in range(0, self.d_n):
            x = random.randint(0, width - self.d_s)
            y = random.randint(0, width - self.d_s)
            rectangles['point%s' % (i * 2)] = (x, y)
            rectangles['point%s' %
                       (i * 2 + 1)] = (x + random.randint(0, self.d_s),
                                       y + random.randint(0, self.d_s))

        ## Generate random variables
        theta = random.uniform(-theta, theta)
        x1 = random.uniform(-frame, frame)
        y1 = random.uniform(-frame, frame)

        x2 = random.uniform(width - frame, width + frame)
        y2 = random.uniform(-frame, frame)

        x3 = random.uniform(-frame, frame)
        y3 = random.uniform(height - frame, height + frame)

        x4 = random.uniform(width - frame, width + frame)
        y4 = random.uniform(height - frame, height + frame)

        hor = random.uniform(-hor, hor)
        ver = random.uniform(-ver, ver)

        h_flip = random.randint(0, 1)

        v_flip = random.randint(0, 1)

        blur_rad = random.randint(0, self.b_p)

        ## Transform image
        # Ripple
        if self.in_rp == 1 and self.tar_rp == 0:
            image = ripple(image, self.rp_prob)

        # Rotation
        if self.in_r == 1:
            M = cv2.getRotationMatrix2D(
                ((width - 1) / 2.0, (height - 1) / 2.0), theta, 1)
            image = cv2.warpAffine(image, M, (width, height))
        else:
            pass

        # Scaling
        if self.in_s == 1:
            pts1 = np.float32([[x1, y1], [x2, y2], [x3, y3], [x4, y4]])
            pts2 = np.float32([[0, 0], [width, 0], [0, height],
                               [width, height]])
            M = cv2.getPerspectiveTransform(pts1, pts2)
            image = cv2.warpPerspective(image, M, (width, height))
        else:
            pass

        # Translation
        if self.in_t == 1:
            M = np.float32([[1, 0, hor], [0, 1, ver]])
            image = cv2.warpAffine(image, M, (width, height))

        # Flip
        if self.in_f == 1:
            if h_flip == 1:
                image = cv2.flip(image, 0)
            else:
                pass

            if v_flip == 1:
                image = cv2.flip(image, 1)
            else:
                pass
        else:
            pass

        color = (0, 0, 0)
        thickness = -1

        # Rectangular dropout
        if self.in_d == 1:
            for n in range(0, self.d_n):
                pt1 = rectangles['point%s' % (n * 2)]
                pt2 = rectangles['point%s' % (n * 2 + 1)]
                image = cv2.rectangle(image, pt1, pt2, color, thickness)

        # Elastic transform
        if self.in_e == 1 and self.tar_e == 0:
            images = [[image]]
            p = Augmentor.DataPipeline(images)
            p.random_distortion(probability=1,
                                grid_width=int(self.o_w / 7),
                                grid_height=int(self.o_h / 7),
                                magnitude=self.e_p)
            a_images = p.sample(1)
            image = a_images[0][0]
        else:
            pass

        # Gaussian blur
        if self.in_b == 1 and blur_rad > 0:
            image = cv2.blur(image, (blur_rad, blur_rad))
        else:
            pass

        # Gaussian noise
        if self.in_n == 1 and self.tar_n == 0:
            image = gaussian_noise(image, random.uniform(0, self.n_p))
        else:
            pass

        # Contrast
        if self.in_c == 1 and self.tar_c == 0:
            factor = random.uniform(1, self.c_u)
            increase_decrease = random.randint(0, 1)
            if increase_decrease == 0:
                enh = 1 / factor**3
            else:
                enh = factor
            image = keras.preprocessing.image.array_to_img(image)
            image = PIL.ImageEnhance.Contrast(image).enhance(enh)
            image = np.array(image)

        # Brightness
        if self.in_br == 1 and self.tar_br == 0:
            factor = random.uniform(1, self.b_u)
            increase_decrease = random.randint(0, 1)
            if increase_decrease == 0:
                enh = 1 / factor**3
            else:
                enh = factor
            image = keras.preprocessing.image.array_to_img(image)
            image = PIL.ImageEnhance.Brightness(image).enhance(enh)
            image = np.array(image)

        ## Transform mask
        # Ripple
        if self.in_rp == 0 and self.tar_rp == 1:
            target = ripple(target, self.rp_prob)

        # Rotation
        if self.tar_r == 1:
            M = cv2.getRotationMatrix2D(
                ((width - 1) / 2.0, (height - 1) / 2.0), theta, 1)
            target = cv2.warpAffine(target, M, (width, height))
        else:
            pass

        # Scaling
        if self.tar_s == 1:
            pts1 = np.float32([[x1, y1], [x2, y2], [x3, y3], [x4, y4]])
            pts2 = np.float32([[0, 0], [width, 0], [0, height],
                               [width, height]])
            M = cv2.getPerspectiveTransform(pts1, pts2)
            target = cv2.warpPerspective(target, M, (width, height))
        else:
            pass

        # Translation
        if self.tar_t == 1:
            M = np.float32([[1, 0, hor], [0, 1, ver]])
            target = cv2.warpAffine(target, M, (width, height))

        # Flip
        if self.tar_f == 1:
            if h_flip == 1:
                target = cv2.flip(target, 0)
            else:
                pass

            if v_flip == 1:
                target = cv2.flip(target, 1)
            else:
                pass
        else:
            pass

        # Rectangular dropout
        if self.tar_d == 1:
            for n in range(0, self.d_n):
                pt1 = rectangles['point%s' % (n * 2)]
                pt2 = rectangles['point%s' % (n * 2 + 1)]
                target = cv2.rectangle(target, pt1, pt2, color, thickness)

        # Elastic transform
        if self.in_e == 0 and self.tar_e == 1:
            target = [[target]]
            p = Augmentor.DataPipeline(target)
            p.random_distortion(probability=1,
                                grid_width=int(self.o_w / 7),
                                grid_height=int(self.o_h / 7),
                                magnitude=self.e_p)
            a_target = p.sample(1)
            target = a_target[0][0]
        else:
            pass

        # Gaussian blur
        if self.tar_b == 1 and blur_rad > 0:
            target = cv2.blur(target, (blur_rad, blur_rad))
        else:
            pass

        # Gaussian noise
        if self.in_n == 0 and self.tar_n == 1:
            target = gaussian_noise(target, random.uniform(0, self.n_p))
        else:
            pass

        # Contrast
        if self.in_c == 0 and self.tar_c == 1:
            factor = random.uniform(1, self.c_u)
            increase_decrease = random.randint(0, 1)
            if increase_decrease == 0:
                enh = 1 / factor**3
            else:
                enh = factor
            target = keras.preprocessing.image.array_to_img(target)
            target = PIL.ImageEnhance.Contrast(target).enhance(enh)
            target = np.array(target)

        # Brightness
        if self.in_br == 0 and self.tar_br == 1:
            factor = random.uniform(1, self.b_u)
            increase_decrease = random.randint(0, 1)
            if increase_decrease == 0:
                enh = 1 / factor**3
            else:
                enh = factor
            target = keras.preprocessing.image.array_to_img(target)
            target = PIL.ImageEnhance.Brightness(target).enhance(enh)
            target = np.array(target)

        ### Apply to both
        # Ripple
        if self.in_rp == 1 and self.tar_rp == 1:
            image, target = ripple_both(image, target, self.rp_prob)

        # Elastic transform
        if self.in_e == 1 and self.tar_e == 1:
            images = [[image, target]]
            p = Augmentor.DataPipeline(images)
            p.random_distortion(probability=1,
                                grid_width=int(self.o_w / 7),
                                grid_height=int(self.o_h / 7),
                                magnitude=self.e_p)
            a_images = p.sample(1)
            image = a_images[0][0]
            target = a_images[0][1]
        else:
            pass

        # Gaussian noise
        if self.in_n == 1 and self.tar_n == 1:
            image, target = gaussian_noise_both(image, target,
                                                random.uniform(0, self.n_p))

        # Contrast
        if self.in_c == 1 and self.tar_c == 1:
            factor = random.uniform(1, self.c_u)
            increase_decrease = random.randint(0, 1)
            if increase_decrease == 0:
                enh = 1 / factor**3
            else:
                enh = factor

            image = keras.preprocessing.image.array_to_img(image)
            target = keras.preprocessing.image.array_to_img(target)
            image = PIL.ImageEnhance.Contrast(image).enhance(enh)
            target = PIL.ImageEnhance.Contrast(target).enhance(enh)
            image = np.array(image)
            target = np.array(target)

        # Brightness
        if self.in_br == 1 and self.tar_br == 1:
            factor = random.uniform(1, self.b_u)
            increase_decrease = random.randint(0, 1)
            if increase_decrease == 0:
                enh = 1 / factor**3
            else:
                enh = factor
            image = keras.preprocessing.image.array_to_img(image)
            target = keras.preprocessing.image.array_to_img(target)
            image = PIL.ImageEnhance.Brightness(image).enhance(enh)
            target = PIL.ImageEnhance.Brightness(target).enhance(enh)
            image = np.array(image)
            target = np.array(target)

        #target = cv2.resize(target, (self.t_w, self.t_h))
        #target = cv2.cvtColor(target, cv2.COLOR_BGR2RGB)

        ## Normalizaing
        image = image / 255.0
        target = target / 255.0

        return image, target
    image_folder = 'image'
    mask_folder = 'label'

    images_list = glob.glob(
        os.path.join(train_path, image_folder, '*' + '.jpg'))
    labels_list = []
    for image_path in images_list:
        labels_list.append(
            os.path.join(train_path, mask_folder,
                         os.path.basename(image_path).split('.')[0] + '.png'))
    collated_images_and_masks = list(zip(images_list, labels_list))
    images = [[np.asarray(Image.open(y)) for y in x]
              for x in collated_images_and_masks]
    y = len(images_list) * [1]  # TODO: hardcoding from class 1

    p = Augmentor.DataPipeline(images, y)
    # p.set_seed(seed)
    # p.rotate(1, max_left_rotation=5, max_right_rotation=5)
    # p.flip_top_bottom(0.5)
    # p.zoom_random(1, percentage_area=0.5)

    ### Train
    if ds_mode == 'train':
        p.skew(
            0.25, magnitude=0.2
        )  # To skew or tilt an image either left, right, forwards, or backwards and 8 cornors
        p.rotate(0.25, max_left_rotation=15, max_right_rotation=15
                 )  # You could combine this with a resize operation,
        p.crop_random(0.25, percentage_area=0.7)
        p.zoom_random(0.25, percentage_area=0.8)
        augmented_images_masks, ys = p.sample(200)
def init_augmentor(images: List[List[np.array]], augment_params: Dict[str, str]) -> Augmentor.DataPipeline:
    """
    Initializes the augmentor pipeline for a given list of images (as numpy arrays)
    and the specified augmentation parameters
    
    # Arguments
        images: List[List[np.array]]. a list of images to apply augmentations to (as numpy arrays).
                                For each image additional mask images like bounding boxes can be specified
                                which will recieve the same augmentations as the image itself
        augment_params: Dict[str, str]. the augmentations to be performed.
                                        Allowed keys are:
                                        'color':        'none', 'small', 'medium', 'large'
                                        'distortion':   'none', 'small', 'medium', 'large'
                                        'noise':        'none', 'small', 'medium', 'large'
                                        'rotate':       'none', 'standard', 'standard_crop'
                                        'scale':        'none', 'x_small', 'x_medium', 'x_large',
                                                                'both_small', 'both_medium', 'both_large'
                                        'shear':        'none', 'x_small', 'x_medium', 'x_large',
                                                                'y_small', 'y_medium', 'y_large',
                                                                'both_small', 'both_medium', 'both_large'
    
    # Returns
        DataPipeline. the augmentation pipeline used to generate augmented images
         
    """
    
    params = {**defaultParams, **augment_params}
    
    p = Augmentor.DataPipeline(images)
    
    # color, brightness, contrast
    if params['color'] == 'small':
        p.random_color(0.3, min_factor=0.95, max_factor=1.05)
        p.random_brightness(0.3, min_factor=0.95, max_factor=1.05)
        p.random_contrast(0.3, min_factor=0.95, max_factor=1.05)
    elif params['color'] == 'medium':
        p.random_color(0.4, min_factor=0.9, max_factor=1.1)
        p.random_brightness(0.4, min_factor=0.9, max_factor=1.1)
        p.random_contrast(0.4, min_factor=0.9, max_factor=1.1)
    elif params['color'] == 'large':
        p.random_color(0.4, min_factor=0.85, max_factor=1.15)
        p.random_brightness(0.4, min_factor=0.9, max_factor=1.1)
        p.random_contrast(0.4, min_factor=0.85, max_factor=1.15)

    # distortion
    if params['distortion'] == 'small':
        p.random_distortion(0.4, grid_width=4, grid_height=4, magnitude=1)
    elif params['distortion'] == 'medium':
        p.random_distortion(0.4, grid_width=10, grid_height=5, magnitude=2)
    elif params['distortion'] == 'large':
        p.random_distortion(0.4, grid_width=15, grid_height=5, magnitude=2)

    # noise, salt&pepper
    if params['noise'] == 'small':
        p.add_operation(RandomNoise(0.25, 0.002))
        p.add_operation(RandomSaltAndPepper(0.2, 0.001, 0.001))
    elif params['noise'] == 'medium':
        p.add_operation(RandomNoise(0.25, 0.006))
        p.add_operation(RandomSaltAndPepper(0.2, 0.003, 0.003))
    elif params['noise'] == 'large':
        p.add_operation(RandomNoise(0.25, 0.01))
        p.add_operation(RandomSaltAndPepper(0.2, 0.005, 0.005))

    # rotate
    if params['rotate'] == 'standard':
        p.rotate_without_crop(0.4, max_left_rotation=2, max_right_rotation=2, expand=True)
    elif params['rotate'] == 'standard_crop':
        p.rotate_without_crop(0.4, max_left_rotation=2, max_right_rotation=2, expand=False)
    
    # scale
    if params['scale'] == 'x_small':
        p.add_operation(Scale(0.3, min_scale_x=0.92, max_scale_x=1.02, min_scale_y=0.99, max_scale_y=1.01))
    elif params['scale'] == 'x_medium':
        p.add_operation(Scale(0.3, min_scale_x=0.85, max_scale_x=1.1, min_scale_y=0.95, max_scale_y=1.05))
    elif params['scale'] == 'x_large':
        p.add_operation(Scale(0.3, min_scale_x=0.8, max_scale_x=1.2, min_scale_y=0.95, max_scale_y=1.05))
    
    elif params['scale'] == 'both_small':
        p.add_operation(Scale(0.3, min_scale_x=0.95, max_scale_x=1.05, min_scale_y=0.95, max_scale_y=1.05))
    elif params['scale'] == 'both_medium':
        p.add_operation(Scale(0.3, min_scale_x=0.9, max_scale_x=1.1, min_scale_y=0.9, max_scale_y=1.1))
    elif params['scale'] == 'both_large':
        p.add_operation(Scale(0.3, min_scale_x=0.8, max_scale_x=1.2, min_scale_y=0.8, max_scale_y=1.2))

    # shear, skew
    if params['shear'] == 'x_small':
        p.skew_left_right(0.3, magnitude=0.005)
        p.add_operation(ShearFloatPrecision(0.4, max_shear_left=1.0, max_shear_right=0.05))
    elif params['shear'] == 'x_medium':
        p.skew_left_right(0.3, magnitude=0.01)                                                  # final
        p.add_operation(ShearFloatPrecision(0.4, max_shear_left=2.0, max_shear_right=0.25))
    elif params['shear'] == 'x_large':
        p.skew_left_right(0.3, magnitude=0.015)
        p.add_operation(ShearFloatPrecision(0.4, max_shear_left=3.0, max_shear_right=0.5))
    
    elif params['shear'] == 'y_small':
        p.add_operation(ShearFloatPrecision(0.4, max_shear_left=0.05, max_shear_right=1.0))     # measure, border
    elif params['shear'] == 'y_medium':
        p.add_operation(ShearFloatPrecision(0.4, max_shear_left=0.25, max_shear_right=2.0))
    elif params['shear'] == 'y_large':
        p.add_operation(ShearFloatPrecision(0.4, max_shear_left=0.5, max_shear_right=3.0))
    
    elif params['shear'] == 'both_small':
        p.skew_left_right(0.3, magnitude=0.005)
        p.add_operation(ShearFloatPrecision(0.4, max_shear_left=1.0, max_shear_right=1.0))      # part
    elif params['shear'] == 'both_medium':
        p.skew_left_right(0.3, magnitude=0.01)
        p.add_operation(ShearFloatPrecision(0.4, max_shear_left=2.0, max_shear_right=2.0, keep_size=True))
    elif params['shear'] == 'both_large':
        p.skew_left_right(0.3, magnitude=0.015)
        p.add_operation(ShearFloatPrecision(0.4, max_shear_left=3.0, max_shear_right=3.0, keep_size=True))

    return p
Example #25
0
def test_sample_with_masks():
    width = 80
    height = 80

    # Original images
    num_of_images = 10
    tmpdir = tempfile.mkdtemp()
    create_multiple_images(tmpdir, num_of_images, (width, height))

    # Mask images
    mask_tmpdir = tempfile.mkdtemp()
    create_multiple_images(mask_tmpdir, num_of_images, (width, height))

    original_image_list = glob.glob(os.path.join(tmpdir, "*.JPEG"))
    mask_image_list = glob.glob(os.path.join(mask_tmpdir, "*.JPEG"))
    assert len(original_image_list) == len(mask_image_list)
    assert len(original_image_list) == num_of_images
    assert len(mask_image_list) == num_of_images

    collated_paths = list(zip(
        original_image_list,
        mask_image_list))  # list() required as Python 3 returns an iterator

    assert len(collated_paths) == num_of_images

    # Generate our labels and image data structure
    # y = [0 if random.random() <= 0.5 else 1 for x in range(0, num_of_images)]  # Random list of 0s and 1s
    image_class = 0 if random.random() <= 0.5 else 1
    y = [image_class] * num_of_images  # List of either all 0s or all 1s
    assert len(y) == num_of_images

    images = [[np.asarray(Image.open(im)) for im in im_list]
              for im_list in collated_paths]
    assert len(images) == num_of_images

    p = Augmentor.DataPipeline(images, y)
    p.rotate(probability=1, max_left_rotation=5, max_right_rotation=5)

    sample_size = 10
    augmented_images, augmented_labels = p.sample(sample_size)

    assert len(augmented_images) == sample_size
    assert len(augmented_labels) == sample_size

    print(augmented_labels)
    for i in range(0, len(augmented_labels)):
        assert augmented_labels[i] == image_class

    for im_list in augmented_images:
        for im in im_list:
            pil_image_from_array = Image.fromarray(im)
            assert pil_image_from_array is not None

    # Now without labels
    p = Augmentor.DataPipeline(images)
    p.zoom_random(probability=1, percentage_area=0.5)

    augmented_images_no_labels = p.sample(sample_size)
    assert len(augmented_images_no_labels) == sample_size

    for im_list_no_labels in augmented_images_no_labels:
        for im in im_list_no_labels:
            pil_image_from_array_no_lbl = Image.fromarray(im)
            assert pil_image_from_array_no_lbl is not None

    # Finally remove the directory (and everything in it) as mkdtemp does
    # not delete itself after closing automatically
    shutil.rmtree(tmpdir)
    shutil.rmtree(mask_tmpdir)
Example #26
0
z = list(zip(x))

print(len((z)))


def unzip(z):
    x_p = [a[0] for a in z]
    return x_p


import random
random.seed(1997)

import Augmentor

p = Augmentor.DataPipeline(z, y)

p.rotate(probability=0.2, max_left_rotation=5, max_right_rotation=5)
p.flip_left_right(probability=0.2)
p.zoom_random(probability=0.1, percentage_area=0.8)
p.flip_top_bottom(probability=0.3)
p.gaussian_distortion(probability=0.05,
                      grid_width=4,
                      grid_height=4,
                      magnitude=3,
                      corner='bell',
                      method='in',
                      mex=0.5,
                      mey=0.5,
                      sdx=0.05,
                      sdy=0.05)
# p.ground_truth("path_to_ground_truth")

# Add operators to the pipeline 'p'
p.rotate(
    probability=0.5, max_left_rotation=15,
    max_right_rotation=15)  # probability = chance of applying this operator

# Sample a specified number of pictures from augmented data, output will be stored in a separate directory
p.sample(4, multi_threaded=False)  # supports multi-threading

## Multiple Mask Image Augmentation
image1 = Image.open("data/grid.png")
image2 = Image.open("data/8.png")
images = [[np.asarray(image1)],
          [np.asarray(image2)]]  # images must be in List of Lists [[]] format
p = Augmentor.DataPipeline(images, labels=None)
p.rotate(probability=0.5, max_left_rotation=15, max_right_rotation=15)
augmented_images = p.sample(1)
plt.imshow(augmented_images[0][0])
plt.show()

## Supported operators

# Rotations
p.rotate(probability=1, max_left_rotation=0, max_right_rotation=0)
p.rotate90(probability=1)
p.rotate180(probability=1)
p.rotate270(probability=1)
p.rotate_random_90(probability=1)
p.rotate_without_crop(probability=1,
                      max_left_rotation=0,
Example #28
0
def trainGenerator2(batch_size,
                    train_path,
                    image_folder,
                    mask_folder,
                    aug_dict,
                    image_color_mode="grayscale",
                    mask_color_mode="grayscale",
                    image_save_prefix="image",
                    mask_save_prefix="mask",
                    flag_multi_class=False,
                    num_class=2,
                    save_to_dir=None,
                    target_size=(256, 256),
                    seed=1,
                    class_mode=None,
                    shuffle=False):

    # images_dir = os.path.join(train_path, image_folder)
    # labels_dir = os.path.join(train_path, mask_folder)
    # logging.debug('images_dir {}'.format(images_dir))
    # logging.debug('labels_dir {}'.format(labels_dir))

    images_list = glob.glob(
        os.path.join(train_path, image_folder, '*' + '.jpg'))
    # labels = glob.glob(os.path.join(images_dir, 'label', '*' + '.png'))

    # images = []
    # labels = []
    # for image_path in images_list:
    #     image = load_img(image_path) # target_size= # PIL
    #     x = img_to_array(image)
    #     images.append(x)

    #     label_path = os.path.join(train_path, mask_folder, os.path.basename(image_path).split('.')[0] + '.png')
    #     label = load_img(label_path) # target_size=
    #     y = img_to_array(label)
    #     labels.append(y)

    # labels.append([os.path.join(train_path, mask_folder, os.path.basename(image_path).split('.')[0] + '.png')])

    labels_list = []
    for image_path in images_list:
        labels_list.append(
            os.path.join(train_path, mask_folder,
                         os.path.basename(image_path).split('.')[0] + '.png'))

    images = [np.asarray(Image.open(x)) for x in images_list]
    labels = [np.asarray(Image.open(x)) for x in labels_list]

    # images = np.array(images)
    # labels = np.array(labels)

    p = Augmentor.DataPipeline(images, labels)
    # p.rotate(1, max_left_rotation=5, max_right_rotation=5)
    # p.flip_top_bottom(0.5)
    p.zoom_random(1, percentage_area=0.5)

    # TODO: Batch size should be always 1
    img, mask = p.sample(1)
    # g = p.keras_generator(batch_size=1)

    img = np.array(img)
    mask = np.array(mask)

    img = np.squeeze(img)
    mask = np.squeeze(mask)

    img, mask = adjustData(img, mask, flag_multi_class, num_class)
    hash_str = str(random.getrandbits(16))

    img_rgb = Image.fromarray((img * 255).astype(np.uint8))
    img_rgb.save(os.path.join('output', 'aug', 'img-' + hash_str + '.jpg'))

    img_gs = Image.fromarray((mask * 255).astype(np.uint8))
    img_gs.save(os.path.join('output', 'aug', 'mask-' + hash_str + '.jpg'))

    # yield (img, mask)

    ### images, labels = next(g)
    # for img, mask in g:
    #     img, mask = adjustData(img,mask,flag_multi_class,num_class)

    #     hash_srt = str(random.getrandbits(16))
    #     img_rgb = Image.fromarray((img * 255).astype(numpy.uint8))
    #     img_rbg.save(os.path.join('output', 'aug', 'aug_image-' + hash_str + '.jpg'))

    # yield (img, mask)

    return None