def test_procedure(self, test_data, distribution_op, inputX, inputY, mode): confusion_matrics = np.zeros([self.num_class, self.num_class], dtype="int") tst_batch_num = int(np.ceil(test_data[0].shape[0] / self.bs)) for step in range(tst_batch_num): _testImg = test_data[0][step * self.bs:step * self.bs + self.bs] _testLab = test_data[1][step * self.bs:step * self.bs + self.bs] matrix_row, matrix_col = self.sess.run(distribution_op, feed_dict={inputX: _testImg, inputY: _testLab, self.is_training: False}) for m, n in zip(matrix_row, matrix_col): confusion_matrics[m][n] += 1 test_accuracy = float(np.sum([confusion_matrics[q][q] for q in range(self.num_class)])) / float( np.sum(confusion_matrics)) detail_test_accuracy = [confusion_matrics[i][i] / np.sum(confusion_matrics[i]) for i in range(self.num_class)] log0 = "Mode: " + mode log1 = "Test Accuracy : %g" % test_accuracy log2 = np.array(confusion_matrics.tolist()) log3 = '' for j in range(self.num_class): log3 += 'category %s test accuracy : %g\n' % (CoGAN_utils.pulmonary_category[j], detail_test_accuracy[j]) log3 = log3[:-1] log4 = 'F_Value : %g\n' % self.f_value(confusion_matrics) CoGAN_utils.save2file(log0, self.ckptDir, self.model) CoGAN_utils.save2file(log1, self.ckptDir, self.model) CoGAN_utils.save2file(log2, self.ckptDir, self.model) CoGAN_utils.save2file(log3, self.ckptDir, self.model) CoGAN_utils.save2file(log4, self.ckptDir, self.model)
def saveConfiguration(self): CoGAN_utils.save2file('epoch : %d' % self.eps, self.ckptDir, self.model) CoGAN_utils.save2file('restore epoch : %d' % self.res_eps, self.ckptDir, self.model) CoGAN_utils.save2file('model : %s' % self.model, self.ckptDir, self.model) CoGAN_utils.save2file('learning rate : %g' % self.lr, self.ckptDir, self.model) CoGAN_utils.save2file('batch size : %d' % self.bs, self.ckptDir, self.model) CoGAN_utils.save2file('image height : %d' % self.img_h, self.ckptDir, self.model) CoGAN_utils.save2file('image width : %d' % self.img_w, self.ckptDir, self.model) CoGAN_utils.save2file('num class : %d' % self.num_class, self.ckptDir, self.model) CoGAN_utils.save2file('train phase : %s' % self.train_phase, self.ckptDir, self.model) CoGAN_utils.save2file('step : %d' % self.step, self.ckptDir, self.model)
def train(self): self.sess.run(tf.global_variables_initializer()) self.itr_epoch = len(self.source_training_data[0]) // self.bs source_training_acc = 0.0 source_training_loss = 0.0 for e in range(1, self.eps + 1): for itr in range(self.itr_epoch): feed_dict_train, feed_dict_eval = self.getBatchData() _ = self.sess.run(self.train_op, feed_dict=feed_dict_train) _training_accuracy, _training_loss = self.sess.run([self.accuracy_source, self.loss], feed_dict=feed_dict_eval) source_training_acc += _training_accuracy source_training_loss += _training_loss summary = self.sess.run(self.merged, feed_dict=feed_dict_eval) source_training_acc = float(source_training_acc / self.itr_epoch) source_training_loss = float(source_training_loss / self.itr_epoch) source_validation_acc, source_validation_loss = self.validation_procedure( validation_data=self.source_validation_data, distribution_op=self.distribution_source, loss_op=self.loss, inputX=self.x_source, inputY=self.y_source) log1 = "Epoch: [%d], Domain: Source, Training Accuracy: [%g], Validation Accuracy: [%g], " \ "Training Loss: [%g], Validation Loss: [%g], Time: [%s]" % ( e, source_training_acc, source_validation_acc, source_training_loss, source_validation_loss, time.ctime(time.time())) self.plt_epoch.append(e) self.plt_training_accuracy.append(source_training_acc) self.plt_training_loss.append(source_training_loss) self.plt_validation_accuracy.append(source_validation_acc) self.plt_validation_loss.append(source_validation_loss) CoGAN_utils.plotAccuracy(x=self.plt_epoch, y1=self.plt_training_accuracy, y2=self.plt_validation_accuracy, figName=self.model, line1Name='training', line2Name='validation', savePath=self.ckptDir) CoGAN_utils.plotLoss(x=self.plt_epoch, y1=self.plt_training_loss, y2=self.plt_validation_loss, figName=self.model, line1Name='training', line2Name='validation', savePath=self.ckptDir) CoGAN_utils.save2file(log1, self.ckptDir, self.model) self.writer.add_summary(summary, e) self.saver.save(self.sess, self.ckptDir + self.model + '-' + str(e)) self.test_procedure(self.source_test_data, distribution_op=self.distribution_source, inputX=self.x_source, inputY=self.y_source, mode='source') source_training_acc = 0.0 source_training_loss = 0.0
def train(self): print('Initialize parameters') self.sess.run(tf.global_variables_initializer()) print('Global variables initialization finished') print('Reload parameters') dict_var = {} for i in self.src_var: for j in self.tar_var: if i.name[i.name.find('/') + 1:] in j.name[j.name.find('/') + 1:]: dict_var[i.name[:-2]] = j self.src_encoder_reloadSaver = tf.train.Saver(var_list=self.src_var) self.tar_encoder_reloadSaver = tf.train.Saver(var_list=dict_var) self.classifier_reloadSaver = tf.train.Saver(var_list=self.cla_var) self.src_encoder_reloadSaver.restore(self.sess, self.reloadPath) self.tar_encoder_reloadSaver.restore(self.sess, self.reloadPath) self.classifier_reloadSaver.restore(self.sess, self.reloadPath) print( 'source encoder, target encoder and classifier have been successfully reloaded !' ) self.itr_epoch = len(self.source_training_data[0]) // self.bs source_training_acc = 0.0 source_training_loss = 0.0 for e in range(1, self.eps + 1): for itr in range(self.itr_epoch): feed_dict_train, feed_dict_eval = self.getBatchData() _ = self.sess.run(self.d_train_op, feed_dict=feed_dict_train) _ = self.sess.run(self.g_train_op, feed_dict=feed_dict_train) _training_accuracy, _training_loss = self.sess.run( [self.accuracy_source, self.supervised_loss], feed_dict=feed_dict_eval) source_training_acc += _training_accuracy source_training_loss += _training_loss summary = self.sess.run(self.merged, feed_dict=feed_dict_eval) source_training_acc = float(source_training_acc / self.itr_epoch) source_training_loss = float(source_training_loss / self.itr_epoch) source_validation_acc, source_validation_loss = self.validation_procedure( validation_data=self.source_validation_data, distribution_op=self.distribution_source, loss_op=self.supervised_loss, inputX=self.x_source, inputY=self.y_source) log1 = "Epoch: [%d], Domain: Source, Training Accuracy: [%g], Validation Accuracy: [%g], " \ "Training Loss: [%g], Validation Loss: [%g], Time: [%s]" % ( e, source_training_acc, source_validation_acc, source_training_loss, source_validation_loss, time.ctime(time.time())) self.plt_epoch.append(e) self.plt_training_accuracy.append(source_training_acc) self.plt_training_loss.append(source_training_loss) self.plt_validation_accuracy.append(source_validation_acc) self.plt_validation_loss.append(source_validation_loss) CoGAN_utils.plotAccuracy(x=self.plt_epoch, y1=self.plt_training_accuracy, y2=self.plt_validation_accuracy, figName=self.model, line1Name='training', line2Name='validation', savePath=self.ckptDir) CoGAN_utils.plotLoss(x=self.plt_epoch, y1=self.plt_training_loss, y2=self.plt_validation_loss, figName=self.model, line1Name='training', line2Name='validation', savePath=self.ckptDir) CoGAN_utils.save2file(log1, self.ckptDir, self.model) self.writer.add_summary(summary, e) self.saver.save(self.sess, self.ckptDir + self.model + '-' + str(e)) self.test_procedure(self.source_test_data, distribution_op=self.distribution_source, inputX=self.x_source, inputY=self.y_source, mode='source') self.test_procedure(self.target_test_data, distribution_op=self.distribution_target, inputX=self.x_target, inputY=self.y_target, mode='target') source_training_acc = 0.0 source_training_loss = 0.0
src_name = '' tar_name = '' src_training = DA_init.loadPickle(CoGAN_utils.experimentalPath, src_name + '_training.pkl') src_validation = DA_init.loadPickle(CoGAN_utils.experimentalPath, src_name + '_validation.pkl') src_test = DA_init.loadPickle(CoGAN_utils.experimentalPath, src_name + '_test.pkl') tar_training = DA_init.loadPickle(CoGAN_utils.experimentalPath, tar_name + '_' + src_name + '.pkl') tar_test = DA_init.loadPickle(CoGAN_utils.experimentalPath, tar_name + '_test.pkl') src_training = CoGAN_utils.normalizeInput(src_training, mode='Paired') src_validation = CoGAN_utils.normalizeInput(src_validation, mode='Paired') src_test = CoGAN_utils.normalizeInput(src_test, mode='Paired') tar_training = CoGAN_utils.normalizeInput(tar_training, mode='Unpaired') tar_test = CoGAN_utils.normalizeInput(tar_test, mode='Paired') print('source training image shape', str(src_training[0].shape)) print('source training label shape', src_training[1].shape) print('source training image mean/std', str(src_training[0].mean()), str(src_training[0].std())) print('source validation image shape', str(src_validation[0].shape)) print('source validation label shape', src_validation[1].shape) print('source validation image mean/std', str(src_validation[0].mean()), str(src_validation[0].std()))